Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2085-2095.doi: 10.13229/j.cnki.jdxbgxb20220322

Previous Articles    

Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell

Chong ZHANG1,2(),Yun-feng HU1,2,Xun GONG3,Yao SUN1()   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
    3.College of Artificial Intelligence,Jilin University,Changchun 130012,China
  • Received:2022-03-28 Online:2022-09-01 Published:2022-09-13
  • Contact: Yao SUN E-mail:zhangchong196419@163.com;syao@jlu.edu.cn

Abstract:

Aiming at the cathode flow control problem of proton exchange membrane fuel cells, considering the dependence of existing model-based control schemes on system dynamics and the influence of unmodeled dynamics on system control performance, a new data-driven model-free adaptive control scheme was designed. Firstly, the non-parametric dynamic linearization technology was used to obtain the dynamic linearized data model of cathode flow, which can realize the adaptability and robustness to the internal parameter perturbation and external perturbation of the controlled system. On the basis of this data model, an adaptive second-order sliding mode controller was designed to improve the transient quality and steady-state accuracy of the system. In addition, under the Lyapunov stability framework, it is proved that the cathode flow system finally enters a convergent quasi-sliding mode driven by the proposed control law. Finally, the parameters in the model-free adaptive sliding mode algorithm are determined by quantum particle swarm optimization. The effectiveness of the proposed control system is verified under multiple operating conditions.

Key words: control science and engineering, fuel cell, model-free adaptive control, second-order sliding mode control, quantum particle swarm optimization

CLC Number: 

  • TP13

Fig.1

Structure block diagram of PEMFC system"

Fig.2

Relationship between OER and net power"

Fig.3

Control block diagram of cathode flow control for PEMFC"

Fig.4

Map of air flow rate with respect to compressor speed and pressure ratio"

Fig.5

Optimization tuning curves under nominal parameters"

Fig.6

Simulation under nominal parameters"

Fig.7

Parameter uncertainties"

Fig.8

Simulation under perturbation parameters"

Fig.9

Simulation under perturbation parameters:performance indicators"

1 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
2 左曙光, 韩惠君, 苏虎, 等. 燃料电池车用旋涡风机气动噪声及影响因素[J]. 吉林大学学报: 工学版, 2013, 43(6): 1453-1458.
Zuo Shu-guang, Han Hui-jun, Su Hu, et al. Analysis of a erodynamic noise and influence factors of a regenerative blower used in air supply system of fuel cell cars[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(6): 1453-1458.
3 Chi X, Lin F, Wang Y X. Disturbance and uncertainty immune onboard charging batteries with fuel cell by using equivalent load fuzzy logic estimation-based backstepping sliding mode control[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1249-1259.
4 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan, USA: University of Michigan, 2003.
5 Li Y H, Pei P C, Ma Z, et al. Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell[J]. Renewable and Sustainable Energy Reviews, 2020, 133: No. 110304.
6 Azad A, Fakhari I, Ahmadi P, et al. Analysis and optimization of a fuel cell integrated with series two-stage organic Rankine cycle with zeotropic mixtures[J]. International Journal of Hydrogen Energy, 2022, 47(5): 3449-3472.
7 Fan Z, Yu X L, Yan M, et al. Oxygen excess ratio control of pem fuel cell based on self-adaptive fuzzy PID[J]. IFAC-Papers OnLine, 2018, 51(31): 15-20.
8 Aliasghary M. Control of PEMFC systems using interval type-2 fuzzy PID approach[J]. Fuel Cells, 2018, 18(4): 449-456.
9 Arce A, Alejandro J, Bordons C, et al. Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell[J]. IEEE Transactions on Industrial Electronics, 2009, 57(6): 1892-1905.
10 Hu Y F, Chen H, Gong X, et al. Control-oriented modeling and robust nonlinear triple-step controller design for an air-feed system for polymer electrolyte membrane fuel cells[J]. Asian Journal of Control, 2019, 21(4): 1811-1823.
11 Ma Y, Zhang F, Gao J W, et al. Oxygen excess ratio control of PEM fuel cells using observer-based nonlinear triple-step controller[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29705-29717.
12 Gruber J K, Bordons C, Oliva A. Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model[J]. Control Engineering Practice, 2012, 20(2): 205-217.
13 Deng H W, Li Q, Cui Y L, et al. Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369.
14 Hou Z, Jin S. Model Free Adaptive Control: Theory and Applications[M]. Boca Raton: CRC Press, 2013.
15 Yu W, Wang R, Bu X H, et al. Model free adaptive control for a class of nonlinear systems with fading measurements[J]. Journal of the Franklin Institute, 2020, 357(12): 7743-7760.
16 Liu S D, Hou Z S, Zhang X, et al. Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft[J]. IET Control Theory and Applications, 2020, 14(15): 2084-2096.
17 Jin M L, Lee J, Tsagarakis N G. Model-free robust adaptive control of humanoid robots with flexible joints[J]. IEEE Transactions on Industrial Electronics, 2016, 64(2): 1706-1715.
18 Tutsoy O, Barkana D E. Model free adaptive control of the under actuated robot manipulator with the chaotic dynamics[J]. ISA transactions, 2021, 118: 106-115.
19 Yuan D D, Wang Y K. Data driven model-free adaptive control method for quadrotor formation trajectory tracking based on rise and ismc algorithm[J]. Sensors, 2021, 21(4): 1289.
20 Mihoub M, Said N A, Abdennour B. Multimodel discrete second order sliding mode control: stability analysis and real time application on a chemical reactor[EB/OL]. [2022-03-01].
21 邢海燕, 刘超, 徐成, 等. 基于粒子群优化模糊C焊缝等级磁记忆定量识别模型[J]. 吉林大学学报:工学版, 2022, 52(3): 525-532.
Xing Hai-yan, Liu Chao, Xu Cheng, et al. Quantitative metal magnetic memory classification model of weld grades based on particle swarm optimization fuzzy C means[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 525-532.
22 韩飞, 郑明鹏. 基于三方竞争机制的反向多目标粒子群优化算法[J].江苏大学学报:自然科学版. 2021, 42(6): 685-693.
Han Fei, Zheng Ming-peng. Opposition-based multi-objective particle swarm optimization algorithm based on tripartite competition mechanism[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 685-693.
23 庄星,韩飞.基于混合群智能算法优化BP神经网络的粮食产量预测[J].江苏大学学报:自然科学版, 2019, 40(2): 209-215.
Zhuang Xing, Han Fei. Prediction of grain yield based on BP neural network optimized by hybrid swarm intelligence algorithm[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(2): 209-215.
24 吴迪瑞,田韶鹏.前、后轴双电动机驱动纯电动客车的转矩分配策略[J].江苏大学学报:自然科学版, 2021, 42(6): 634-641.
Wu Di-rui, Tian Shao-peng. Torque distribution strategy of pure electric bus with double motors driving by front and rear axles[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 634-641.
25 孙郁闻天. 基于量子行为的多目标粒子群优化算法的研究及其应用[D]. 镇江: 江苏大学计算机科学与通信工程学院, 2019.
Sun Yu-wen-tian. A study of multi-objective particle swarm optimization based on quantum behavior and its application[D]. Zhenjiang: College of Computer Science and Communication Engineering, Jiangsu University, 2019.
[1] Ji-zong LIU,Xiao-ping WU,Wei-hua KONG. Parameter configuration of fuel cell hybrid system for tram based on fish swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2004-2013.
[2] Jing DU,Hong-hui ZHAO,Yu-peng WANG,Tian-wei DING,Kai WEI,Kai WANG,Ling-hai HAN. Purge strategy optimization and verification of PEM fuel cell engine based on AMESim simulation model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2069-2076.
[3] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[4] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[5] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[6] Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033.
[7] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[8] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[9] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[10] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[11] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[12] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[13] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[14] De-feng HE,Jie LUO,Xiao-xiang SHU. Delay-feedback predictive cruise control of autonomous and connected vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 349-357.
[15] Zhe WANG,Yi XIE,Peng-fei ZANG,Yao WANG. Energy management strategy of fuel cell bus based on Pontryagin′s minimum principle [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!