Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 1120-1128.doi: 10.13229/j.cnki.jdxbgxb.20240155

Previous Articles    

Path planning for multimodal quadruped robots based on discrete sampling

Shuai-shuai SUN1(),Chun-xiao FENG1,Liang ZHANG2   

  1. 1.College of Engineering Science,University of Science and Technology of China,Hefei 230026,China
    2.College of Electrical Engineering and Automation,Anhui University,Hefei 230601,China
  • Received:2024-02-07 Online:2024-04-01 Published:2024-05-17

Abstract:

Aiming at the challenges of unnecessary leap and significant undulations terrains with large steering angles in path planning of multimodal quadruped robots by Rapidly Exploring Random Tree algorithm, a path planning algorithm solution based on discrete sampling is proposed. The path is preprocessed to remove unnecessary leap and a solution set is obtained by discrete sampling and dynamic programming method. B-spline curves are used to define spline segments and quadratic programming method is used to optimize the final path. The simulation results show that paths planned by the proposed method exhibit an average reduction of 31.4% in the adjustment of robot's center of mass height, a 13.4% decrease in undulation of terrain, an 11.4% reduction in terrain slope angle and a 62.7% reduction in steering angle, which affirm the effectiveness of the proposed method.

Key words: artificial intelligence, quadruped robot, multimodal, path planning, discrete sampling, quadratic programming

CLC Number: 

  • TP242

Fig.1

Generating nodes for KD-RRT-Connect"

Fig.2

Flow chart of Proposed algorithm"

Fig.3

Simulation environment"

Table 1

Environment parameters"

参数数值/m
地图长度12.4
地图宽度12.4
地图网格分辨率0.2
初始质心相对地面的高度0.3

Fig.4

Terrain of different complexity"

Fig.5

Results of different complexity terrain"

Table 2

Mean value of results"

算法路径长度质心变化地形起伏地形倾斜转向变化
KD-RRT-Connect16.6672.7442.26611.54911.098
改进算法15.7031.8821.96210.2384.141

Table 3

Variance of results"

算法路径长度质心变化地形起伏地形倾斜转向变化
KD-RRT-Connect1.5750.3210.3632.02835.520
改进算法0.8960.2310.3412.2682.269

Fig.6

Distribution of results"

Fig.7

Comparison of results"

1 张秀丽, 王琪, 黄森威, 等. 一种多模型融合的仿猎豹四足机器人复杂运动控制方法[J]. 机器人, 2022, 44(6): 682-693.
Zhang Xiu-li, Wang qi, Huang Sen-wei, et al. A multi-model fusion based complex motion control approach for a cheetah-mimicking quadruped robot[J]. Robot, 2022, 44(6): 682-693.
2 张帅帅, 荣学文, 李贻斌, 等. 崎岖地形环境下四足机器人的静步态规划方法[J]. 吉林大学学报: 工学版, 2016, 46(4): 1287-1296.
Zhang Shuai-shuai, Rong Xue-wen, Li Yi-bin, et al. Static gait planning method for quadruped robots on rough terrains[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4): 1287-1296.
3 周坤, 李川, 李超, 等. 面向未知复杂地形的四足机器人运动规划方法[J]. 机械工程学报, 2020, 56(2): 210-219.
Zhou Kun, Li Chuan, Li Chao, et al. Motion planning method for quadruped robots walking on unknown rough terrain[J]. Journal of Mechanical Engineering, 2020, 56(2): 210-219.
4 Nguyen Q, Powell M J, Katz B, et al. Optimized jump on the MIT cheetah 3 robot[C]∥International Conference on Robotics and Automation(ICRA), Montreal, Canada,2019: 7448-7454.
5 Jenelten F, He J, Farshidian F, et al. DTC: deep tracking control[J]. Science Robotics, 2024, 9(86): No.eadh5401.
6 崔炜, 朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用, 2023, 59(19): 10-20.
Cui Wei, Zhu Fa-zheng. Review of path planning algorithms for robot navigation[J]. Computer Engineering and Applications, 2023, 59(19): 10-20.
7 LaValle S. Rapidly-exploring random trees: a new tool for path planning[J]. Research Report, 1998:No.9811
8 Kavraki L E, Svestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580.
9 Fankhauser P, Hutter M. A universal grid map library: implementation and use case for rough terrain navigation[J]. Robot Operating System(ROS)——the Complete Reference, 2016(1): 99-120.
10 Fankhauser P, Bloesch M, Gehring C, et al. Robot-centric elevation map with uncertainty estimates[M]∥Mobile Service Robotics. London, UK: World Scientific, 2014: 433-440.
11 张慧, 荣学文, 李贻斌, 等. 四足机器人地形识别与路径规划算法[J]. 机器人, 2015, 37(5): 546-556.
Zhang hui, Rong Xue-wen, Li Yi-bin, et al. Terrain recognition and path planning for quadruped robot[J]. Robot, 2015, 37(5): 546-556.
12 Wermelinger M, Fankhauser P, Diethelm R, et al. Navigation planning for legged robots in challenging terrain[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),Daejeon, South Korea, 2016: 1184-1189.
13 Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894.
14 Norby J, Johnson A M. Fast global motion planning for dynamic legged robots[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA,2020: 3829-3836.
15 Kuffner J J, LaValle S M. RRT-connect: an efficient approach to single-query path planning[C]∥IEEE International Conference on Robotics and Automation. FranciscoSan, USA, 2000: 995-1001.
16 Wellhausen L, Hutter M. Rough terrain navigation for legged robots using reachability planning and template learning[C]∥2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 6914-6921.
17 Fernbach P, Tonneau S, Del Prete A, et al. A kinodynamic steering-method for legged multi-contact locomotion[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Vancouver, Canada,2017: 3701-3707.
18 吴振宇, 刘小飞, 王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报: 工学版, 2023, 53(3): 781-791.
Wu Zhen-yu, Liu Xiao-fei, Wang Yi-pu. Trajectory planning of unmanned system based on DKRRT*⁃APF algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 781-791.
19 De Boor C. On calculating with B-splines[J]. Journal of Approximation Theory, 1972, 6(1): 50-62.
20 Steinbeck M, Koschke R. Tinyspline: a small, yet powerful library for interpolating, transforming, and querying nurbs, b-splines, and bézier curves[C]∥IEEE International Conference on Software Analysis, Evolution and Reengineering(SANER),Honolulu, USA, 2021: 572-576.
21 Stellato B, Banjac G, Goulart P, et al. OSQP: an operator splitting solver for quadratic programs[J]. Mathematical Programming Computation, 2020, 12(4): 637-672.
[1] Zhi-gang JIN,Ren-jun SU,Xiao-fang ZHAO. Psychological assessment method based on heterogeneous graph network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1078-1085.
[2] Jing-peng GAO,Guo-xuan WANG,Lu GAO. LSTM⁃MADDPG multi⁃agent cooperative decision algorithm based on asynchronous collaborative update [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 797-806.
[3] Liu LIU,Kun DING,Shan-shan LIU,Ming LIU. Event detection method as machine reading comprehension [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 533-539.
[4] Hao ZHENG,Li-jun YU,Peng-peng ZHI,Zhong-lai WANG. Dynamic obstacle avoidance strategy for flapping⁃wing micro air vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2732-2740.
[5] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[6] Jian LI,Qi XIONG,Ya-ting HU,Kong-yu LIU. Chinese named entity recognition method based on Transformer and hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1427-1434.
[7] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
[8] Zhen-yu WU,Xiao-fei LIU,Yi-pu WANG. Trajectory planning of unmanned system based on DKRRT*⁃APF algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 781-791.
[9] Chun-hui LIU,Si-chang WANG,Ce ZHENG,Xiu-lian CHEN,Chun-lei HAO. Obstacle avoidance planning algorithm for indoor navigation robot based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3558-3564.
[10] Wen-jing WU,Kang-bei XIONG,Li-li YANG,Si-xu PU. Optimization of bus transfer preferential strategy in passenger corridor based on mental account theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3113-3121.
[11] Fan YANG,Zhi-qiang ZHAI,Yuan-yuan WANG,Zhong-xiang ZHU,Yue-feng DU,En-rong MAO. Design of assembly system for tractor transmission based on virtual reality [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 3038-3044.
[12] Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880.
[13] Sheng-sheng WANG,Lin-yan JIANG,Yong-bo YANG. Transfer learning of medical image segmentation based on optimal transport feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1626-1638.
[14] Hao-yu TIAN,Xin MA,Yi-bin LI. Skeleton-based abnormal gait recognition: a survey [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 725-737.
[15] Yong LIU,Lei XU,Chu-han ZHANG. Deep reinforcement learning model for text games [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 666-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!