Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1277-1284.doi: 10.13229/j.cnki.jdxbgxb.20220755

Previous Articles    

A risk evaluation method for urban intersections considering drivers' physiological information

Gui-zhen CHEN1(),Hui-ting CHENG2,Cai-hua ZHU1,Yu-ran LI1,Yan LI1()   

  1. 1.College of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.School of Rail Transportation,Chongqing Vocational College of Transportation,Chongqing 402247,China
  • Received:2022-06-18 Online:2024-05-01 Published:2024-06-11
  • Contact: Yan LI E-mail:chenguizhen@chd.edu.cn;lyan@chd.edu.cn

Abstract:

A risk assessment method that combines risk probability and risk loss has been established to address the problem of insufficient consideration of driver status and risk loss in intersection risk assessment. The entropy weight method is utilized to determine the risk probability based on drivers' physiological information, while direct risk loss is calculated using the energy conversion theorem, and indirect risk loss is identified through the introduction of environmental vulnerability metrics. To prioritize intersection risk, a clustering algorithm is applied to rank both risk probability and risk loss. Subsequently, the intersection risk rank is determined through a risk matrix analysis. Empirical using data from 19 intersections in Xi'an city demonstrates that intersection risk levels can be categorized into four tiers: relatively safe, generally safe, relatively risky, and very risky, with a predominant concentration in the relatively risky category. The proposed intersection risk assessment method based on drivers' physiological information matches the perceptions of test drivers with 90% accuracy, providing a new method for driver risk management.

Key words: transportation planning and management, physiological indicators, urban intersections, risk assessment, entropy weight method, K-means clustering, risk matrix

CLC Number: 

  • U491

Fig.1

Experimental setup"

Table 1

Physiological index system"

指标类型指标渐进显著性差异显著性说明指标类型指标说明
眼动指标平均注视持续时间(AFD)0.304差异不显著注视类指标心电指标LF低频段功率
注视比例(FR)0.017差异显著LF norm规一化低频段功率
平均扫视持续时间(ASD)0.377差异不显著扫视类指标HF高频段功率
扫视比例(SR)0.356差异不显著HF norm规一化高频段功率
平均扫视幅度(ASA)0.627差异不显著LF/HFLF与HF比值
平均扫视速度(ASV)0.000差异显著MRRRR间期均值
平均眨眼持续时间(ABD)0.003差异显著眨眼类指标SDNNRR间期均方差
眨眼比例(BR)0.001差异显著
眨眼频率(BF)0.001差异显著

Fig.2

Risk evaluation framework"

Fig.3

Urban intersection risk index system"

Table 2

Weighting of each indicator in the urban intersection risk probability model"

权重AFDBFSRASALF变化率HF变化率MRRSDNN流量静态
左转5.732.824.442.952.121.755.742.7237.0934.64
直行3.792.035.971.793.321.957.652.8342.5728.08
右转3.752.930.972.862.211.883.492.2155.4424.24

Fig.4

Comparison of intersection risk probability under three types of steering"

Table 3

Threshold values for dividing the risk probability values of urban intersections under three types of steering"

风险概率

非常

安全

比较

安全

一般

安全

比较

风险

非常

风险

左转0.0~0.150.15~0.450.45~0.550.55~0.750.75~1.00
直行0.0~0.150.15~0.250.25~0.450.45~0.750.75~1.00
右转0.0~0.150.15~0.400.40~0.500.50~0.750.75~1.00

Table 4

Indicator weights"

指标权重/%指标权重/%
交叉口车辆类型11.80时段7.70
交叉口大小10.20交叉口土地性质23.30
交叉口类型9.10交叉口周围行人数量8.90
道路上汽车数量6.20安全防护设施9.70
天气13.00

Table 5

Classification of intersection risk loss events"

风险损失等级直接风险损失/J

间接风险损失

(环境脆弱度)

风险损失分级事故损失
轻微0~12250~20~2450仅仅是车辆间轻微剐蹭,不会造成人员伤亡及财产损失
一般1225~25002~42450~10000一次造成轻伤1~2人,或者财产损失机动车不足1000元的事故,对非机动车不足200元的事故
较大2500~36004~610000~21600一次造成重伤1~2人或者轻伤3人以上10人以下,或者财产损失不足3万元的事故
重大>3600>6>21600一次造成死亡1~2人,或者重伤3人以上10人以下,或者财产损失3万元以上不足6万元的事故

Fig.5

Risk level of urban intersections"

1 Laureshyn A, Ceunynck T D, Karlsson C, et al. In search of the severity dimension of traffic events: extended Delta-V as a traffic conflict indicator[J]. Accident Analysis and Prevention, 2017, 98(1):46-56.
2 朱彤,秦丹,董傲然,等.公交车驾驶人历史违规数据与事故责任的随机参数模型研究[J].安全与环境学报,2021,21(4):1566-1572.
Zhu Tong, Qin Dan, Dong Ao-ran, et al. Investigation on the random parameter model of bus drivers' history violation data and accident liability[J]. Journal of Safety and Environment, 2021,21(4):1566-1572.
3 Khattak A J, Khattak A J, Council F M. Effects of work zone presence on injury and non-injury crashes [J]. Accident Analysis and Prevention, 2002, 34(1): 19-29.
4 潘恒彦,王永岗,李德林,等.基于交通冲突的长纵坡路段追尾风险评估及预测 [J]. 吉林大学学报:工学版, 2023, 53(5): 1355-1363.
Pan Heng-yan, Wang Yong-gang, Li De-lin, et al. Evaluating and forecasting rear-end collision risk of long longitudinal gradient roadway via traffic conflict[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(5):1355-1363.
5 Hirose T, Takada T, Oikawa S, et al. Validation of driver support system based on real-world bicycle and motor vehicle flows[J]. Accident Analysis and Prevention, 2021, 156(9): 106131.
6 马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型 [J]. 交通运输系统工程与信息, 2018, 18(2): 142-148.
Ma Yan-li, Qi Shou-ming, Wu Hao-tian, et al. Traffic conflict identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 142-148.
7 郭延永, 刘攀, 吴瑶, 等. 基于贝叶斯多元泊松-对数正态分布的交通冲突模型 [J]. 中国公路学报, 2018, 31(1): 101-109.
Guo Yan-yong, Liu Pan, Wu Yao,et al. Traffic conflict model based on bayesian multivariate poisson-lognormal normal distribution[J]. China Journal of Highway and Transport, 2018, 31(1): 101-109.
8 郭伟伟, 曲昭伟, 王殿海. 交通冲突判别模型[J]. 吉林大学学报:工学版, 2011, 41(1): 35-40.
Guo Wei-wei, Qu Zhao-wei, Wang Dian-hai. Traffic conflict discrimination model[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(1): 35-40.
9 Kaye S A, Lewis I, Freeman J. Comparison of self-report and objective measures of driving behavior and road safety: a systematic review[J]. Journal of Safety Research, 2018, 65:141-151.
10 Minea M, Dumitrescu C M, Costea I M. Advanced e-call support based on non-intrusive driver condition monitoring for connected and autonomous vehicles [J]. Sensors, 2021, 21(24): 82723701.
11 Quddus A, Zandi A S, Prest L, et al. Using long short term memory and convolutional neural networks for driver drowsiness detection[J]. Accident Analysis and Prevention, 2021, 156(1): 106107.
12 Li Y, Wang F, Ke H, et al. A driver's physiology sensor-based driving risk prediction method for lane-changing process using hidden markov model [J]. Sensors, 2019, 19(12): 26701105.
13 Patel M, Lal S K L, Kavanagh D, et al. Applying neural network analysis on heart rate variability data to assess driver fatigue[J]. Expert Systems with Applications, 2011, 38(6): 7235-7242.
14 Wang J Q, Zheng Y, Li X F, et al. Driving risk assessment using near-crash database through data mining of tree-based model[J]. Accident Analysis and Prevention, 2015, 84(11): 54-64.
15 刘建蓓, 马小龙, 张志伟,等. 基于心电分析的青藏高原驾驶员疲劳特性[J]. 交通运输工程学报, 2016, 16(4): 151-158.
Liu Jian-bei, Ma Xiao-long, Zhang Zhi-wei, et al. Fatigue characteristics of driver in Qinghai-Tibet Plateau based on electrocardiogram analysis[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 151-158.
16 徐文会, 刘开华, 王丽婷. 使用改进Welch法估计心率变异功率谱分析人体疲劳程度 [J]. 生物医学工程学杂志, 2016, 33(1): 67-71.
Xu Wen-hui, Liu Kai-hua, Wang Li-ting. Estimation of the power spectrum of heart rate variability using improved welch method to analyze the degree of fatigue[J]. Journal of Biomedical Engineering, 2016, 33(1): 67-71.
17 袁伟, 付锐, 郭应时, 等. 基于视觉特性的驾驶员换道意图识别[J]. 中国公路学报, 2013, 26(4): 132-138.
Yuan Wei, Fu Rui, Guo Ying-shi, et al. Drivers lane changing intention identification based on visual characteristics[J]. China Journal of Highway and Transport, 2013, 26(4): 132-138.
18 朱才华, 孙晓黎, 李岩. 站点分类下的城市公共自行车交通需求预测 [J]. 吉林大学学报:工学版,2021, 51(2): 531-540.
Zhu Cai-hua, Sun Xiao-li, Li Yan. Forecast of urban public bicycle traffic demand by station classification[J]. Journal of Jilin University (Engineering and Technology Edition),2021, 51(2): 531-540.
19 潘福全, 陆键, 项乔君, 等. 公路信号平面交叉口安全服务水平研究 [J]. 东南大学学报:自然科学版, 2008, 38(2): 298-303.
Pan Fu-quan, Lu Jian, Xiang Qiao-jun, et al. Level of safety service for highway signalized intersections [J]. Journal of Southeast University (Natural Science Edition), 2008, 38(2): 298-303.
20 张志刚. 道路因素、交通环境与交通事故分析 [J]. 公路交通科技, 2000, 17(6): 56-59.
Zhang Zhi-gang. Road conditions, traffic environment and traffic accident analysis[J]. Journal of Highway and Transportation Research and Development, 2000, 17(6): 56-59.
[1] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[2] Xiu-jian YANG,Xiao-han JIA,Sheng-bin ZHANG. Characteristics of mixed traffic flow taking account effect of dynamics of vehicular platoon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 947-958.
[3] Bo-song FAN,Chun-fu SHAO. Urban rail transit emergency risk level identification method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 427-435.
[4] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[5] Dian-hai WANG,You-wei HU,Zheng-yi CAI,Jia-qi ZENG,Wen-bin YAO. Dynamic road resistance model of intermittent flow on urban roads based on BPR function [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1951-1961.
[6] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
[7] Ying HU,Chun-fu SHAO,Shu-ling WANG,Xi JIANG,Hai-rui SUN. Identification of road riding quality based on shared bike trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1040-1046.
[8] Rong-han YAO,Wen-tao XU,Wei-wei GUO. Drivers' takeover behavior and intention recognition based on factor and long short⁃term memory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 758-771.
[9] Zhan-zhong WANG,Ting JIANG,Jing-hai ZHANG. Evaluation of road transportation efficiency based on fuzzy double frontiers network model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 385-395.
[10] Min YANG,Cong-wei ZHANG,Da-wei LI,Chen-xiang MA. Travel satisfaction model for air-rail integration passengers based on Bayesian network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2839-2846.
[11] Qian CAO,Zhi-hui LI,Peng-fei TAO,Yong-jian MA,Chen-xi YANG. Traffic accident risk assessment method for road network considering risk heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2817-2825.
[12] Yan-yan QIN,Xiao-qing YANG,Hao WANG. Impacts of CO2 emissions and improving method for connected and automated mixed traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 150-158.
[13] Jie-yu ZHU,Yan-li MA. Real-time risk assessment method of multi-vehicle interaction at merging area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1574-1581.
[14] Hao-nan PENG,Ming-huan TANG,Qi-wen ZHA,Wei-zhong WANG,Wei-da WANG,Chang-le XIANG,Yu-long LIU. Optimization⁃based lane changing trajectory planning approach for autonomous vehicles on two⁃lane road [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2852-2863.
[15] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Jian LI. Mixed network equilibrium model with stochastic charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!