Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1677-1687.doi: 10.13229/j.cnki.jdxbgxb.20221138

Previous Articles    

Experiment on seismic performance of prefabricated beam-column joints with kinded rebar

Yong-jun QIN(),Qi CHEN,Chi ZHANG,Jian-hu WANG   

  1. School of Civil Engineering and Architecture,Xinjiang University,Urumqi 830047,China
  • Received:2022-09-02 Online:2024-06-01 Published:2024-07-23

Abstract:

In order to transfer the plastic hinge of prefabricated frame beam-column joints and avoid the "strong beam and weak column" failure mode caused by shear failure in the core area of the joints, a new type of prefabricated specimens and contrast pieces with kinded rebar were designed; The quasi-static loading test is carried out to compare and analyze the differences in hysteretic characteristics, stiffness, bearing capacity, energy dissipation and deformation capacity, and explore the seismic performance under low cycle reciprocating load. The results show that the overall deformation of the new joint is mainly caused by the deformation of the kinded rebar segment, and the core area is not damaged. The transfer of the plastic hinge is successfully realized, and the new joint has better energy dissipation and deformation capacity than the comparison specimen.

Key words: prefabricated beam-column joint, kinded rebar, plastic hinge, member deformation, seismic performance

CLC Number: 

  • TU375.4

Table 1

Parameters of joint specimens"

试件编号梁截面尺寸/mm×mm柱截面尺寸/mm×mm轴压比节点类型
RC0150×280250×2500.2-
RC30150×280250×2500.2起波钢筋
PC0150×280250×2500.2全灌浆套筒
PC30150×280250×2500.2起波钢筋+全灌浆套筒

Fig.1

Dimension and details of reinforcements for specimens(Unit: mm)"

Fig.2

Details of kinded rebar"

Table 2

Mechanical properties of steel bars"

钢筋牌号

直径

d/mm

屈服强度

fy /MPa

极限强度

fu/MPa

延伸率/%
HPB3008357561.413.31
HRB40016453.8621.839.7
起波钢筋16440.8616.968.9

Fig.3

Uniaxial tensile process and results of kinded rebar"

Table 3

Mechanical properties of concrete"

混凝土等级fcuk/MPafc/MPa?tk/MPa?t/MPa
C4052.635.23.72.6
C5064.3434.23.0

Fig.4

Schematic diagram of loading device"

Fig.5

Loading system"

Fig.6

Failure modes of specimens"

Fig.7

Hysteretic curves of specimens"

Fig.8

Enveloping curves of specimens"

Table 4

Specimen bearing capacity and displacement ductility coefficient"

试件方向Py/kNΔy/mmPm /kNΔm/mmΔu/mmRuRyμ
RC0正向29.5613.1434.5030.0445.091/451.173.43
负向29.9922.6832.3070.0070.001/291.083.09
PC0正向30.6013.2437.7021.2542.141/481.173.18
负向37.0718.4542.7070.0070.001/291.153.79
RC30正向19.7811.4423.4032.5647.171/431.184.12
负向24.9718.8333.8070.0070.001/291.353.72
PC30正向39.1214.4646.7023.4351.581/201.193.57
负向37.2320.1642.1070.0070.001/291.133.47

Fig.9

Energy consumption capacity of specimens"

Table 5

Relative value of cumulative energy consumption of specimen"

试件编号E/(kN·m-1η
RC044.71.00
PC063.91.43
RC3080.81.81
PC3092.12.06

Fig.10

Stiffness degradation of specimens"

Fig.11

Specimen deformation consists of a lateral shift ratio"

1 Dooley K L, Bracci J M. Seismic evaluation of column-to-beam strength ratios in reinforced concrete frames[J]. ACI Structural Journal,2001, 98(6):843-851.
2 Park R, Milburn J R. Comparison of recent New Zealand and United States seismic design provisions for reinforced concrete beam-column joints and test results for four units designed according to the New Zealand code[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1983, 16(1):21-42.
3 黄良璧, 王崇昌, 陈平, 等. 关于钢筋混凝土框架梁端塑性铰转移问题的研究[J]. 西安冶金建筑学院学报,1990, 22(2): 97-105.
Huang Liang-bi, Wang Chong-chang, Chen Ping, et al. Study on the transfer of plastic hinges at the ends of reinforced concrete frame beams[J]. Journal of Xi'an University of Architecture & Technology, 1990, 22(2): 97-105.
4 Youssef M A, Alam M S, Nehdi M. Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys[J]. Journal of Earthquake Engineering,2008, 12(7): 1205-1222.
5 Yu J, Tan K H. Special detailing techniques to improve structural resistance against progressive collapse[J]. Journal of Structural Engineering,2014, 140(3): No.04013077.
6 Kam W E, Stefano P. Selective weakening and post-tensioning for the seismic retrofit of non-ductile RC frames[D]. Christchurch:University of Canterbury, 2018.
7 Kam W E, Pampanin S. Selective weakening and post-tensioning for retrofit of non-ductile R.C. exterior beam-column joints[J/OL]. [2022-07-26]. .
8 蒋永生, 卫龙武, 陆建忠, 等. 钢筋混凝土框架节点梁端人工塑性铰新方案的探索[J]. 东南大学学报,1991, 21(1):42-49.
Jiang Yong-sheng, Wei Long-wu, Lu Jian-zhong, et al. Exploration of new schemes of artificial plastic hinges at the end of reinforced concrete frame joints[J]. Journal of Southeast University, 1991, 21(1):42-49.
9 王兴国, 单明岳, 葛楠, 等. 楼板开角缝实现RC框架“强柱弱梁”效果的有限元分析[J]. 地震工程与工程振动,2012, 32(1):121-127.
Wang Xing-guo, Shan Ming-yue, Ge Nan, et al. Finite element analysis of efficiency of slot-cutting around RC frame joint for "strong column and weak beam"[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(1): 121-127.
10 Oudah F, El-Hacha R. Plastic hinge relocation in concrete structures using the double-slotted-beam system[J]. Bulletin of Earthquake Engineering, 2017, 15(5): 2173-2199.
11 Byrne J, Bull D. Design and testing of reinforced concrete frames incorporating the slotted beam detail[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,2012, 45(2): 77-83.
12 Ohkubo M. Shear transfer mechanism of reinforced concrete beams with a slot at the beam-end[J]. Proceedings of the Japan Concrete Institute,1999, 21(3): 523-528.
13 刘思嘉, 陈力, 曹铭津, 等. 起波钢筋高速动态拉伸力学性能研究[J]. 爆炸与冲击, 2022,42(5):26-37.
Liu Si-jia, Chen Li, Cao Ming-jin, et al. Study on mechanical properties of the kinked rebar under high speed dynamic tension[J]. Explosion and Shock Waves, 2022, 42(5): 26-37.
14 樊源, 陈力, 任辉启, 等. 起波配筋RC梁抗爆 作用机理及抗力动力系数的理论计算方法[J]. 爆炸与冲击, 2019, 39(3): 123-134.
Fan Yuan, Chen Li, Ren Hui-qi, et al. Theoretical calculation method of explosion resistance mechanism and resistance dynamic coefficient of RC beam with kinded rebar[J]. Explosion and Shock Waves, 2019, 39(3): 123-134.
15 Galunic B, Bertero V V, Popov E P. An approach for improving seismic behavior of reinforced concrete interior joints[D].California: University of California, 1977.
16 杨健翔. 起波钢筋RC梁柱子结构抗连续倒塌性能研究[D]. 南京: 东南大学土木工程学院, 2019:95-103.
Yang Jian-xiang. Study on progressive collapse behavior of RC beam-column substructure with a kinked rebar configuration[D]. Nanjing: School of Civil Engineering, Southeast University, 2019: 95-103.
17 Feng P, Qiang H, Qin W, et al. A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures[J]. Engineering Structures, 2017, 147: 752-767.
18 Qiang H, Yang J, Feng P, et al. Kinked rebar configurations for improving the progressive collapse behaviours of RC frames under middle column removal scenarios[J]. Engineering Structures, 2020, 211 :No.110425.
19 Qiang H, Feng P, Stojadinovic B, et al. Cyclic loading behaviors of novel RC beams with kinked rebar configuration[J]. Engineering Structures, 2019, 200: No.109689.
20 陈力, 任辉启, 樊源, 等. 强动载作用下起波配筋梁抗力性能的试验研究[J]. 土木工程学报, 2021, 54(10): 1-8.
Chen Li, Ren Hui-qi, Fan Yuan, et al. Experimental study on the resistance of RC beam with kinked rebar under severe dynamic loading[J]. China Civil Engineering Journal, 2021, 54(10): 1-8.
21 . 装配式混凝土结构技术规程 [S].
22 . 金属材料拉伸试验第1部分: 室温试验方法 [S].
23 . 普通混凝土力学性能试验方法标准 [S].
24 . 建筑抗震试验规程 [S].
25 . 建筑抗震设计规范 [S].
26 . 钢筋混凝土装配整体式框架节点与连接设计规程 [S].
[1] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[2] Hua-fei HE,Zhao-ping LI,Rui-an FU,Shao-lin MA,Ming-li HUANG. Experiment on seismic performance of prefabricated sidewall joints considering strata restraint effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1601-1611.
[3] Yu-rong GUO,Jian-zhong PAN. Numerical simulation method for reinforced concrete columns based on modified Bouc-Wen model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1028-1037.
[4] Ming LEI,Si-yang YIN,De-ling WANG,Ji-cheng ZHANG,Shi-wei LU. Seismic performance simulation of high⁃rise concrete core tube based on static nappe analysis algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2573-2580.
[5] Zhen-yong DI,Xin-hui YANG,Xiao LIN. Seismic performance analysis of building double beam column joints based on load displacement hysteretic curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2061-2066.
[6] Zhen-liang LIU,Cun-bao ZHAO,Yun-peng WU,Mi-na MA,Long-shuang MA. Life⁃cycle seismic resilience assessment of highway bridge networks using data⁃driven method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1695-1701.
[7] Lin-feng WANG,Wan-chun XIA,Lang XU,Xiao-ming HUANG,Guo-jin TAN,Ji-xu ZHANG. Structure and seismic performance analysis of plate spring damping anchor head [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1842-1852.
[8] Qing-feng YAN,Ji-gang ZHANG,Tao WANG,De-gang CHEN,You-sheng YU,Ying-chun YANG. Seismic performance of connection joints between prefabricated prefinished volumetric construction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 505-514.
[9] Yong-zhi GONG,Jin-hua KUANG,Fu-long KE,Quan ZHOU,Xiao-yong LUO. Experiment on seismic behavior of assembled shear wall joints connected by ultra high performance concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2367-2375.
[10] Guang-tai ZHANG,Lu-yang ZHANG,Guo-hua XING,Yin-long CAO,Bao YI. Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 946-955.
[11] SU Ying-she, YANG Yuan-yuan. Seismic compression performance of the concrete under high temperature [J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
[12] GAO Xin, WU Xiao-wei, TIAN Jun. Structure of nonlinear finite element model of lightweight aggregate concrete share wall and the factors affecting seismic performance [J]. 吉林大学学报(工学版), 2015, 45(5): 1428-1435.
[13] YU Xiang-Jun, WANG Guo-Qiang, WANG Ji-Xin, TANG Xiao-Bo, HU Ji. Dynamic response of rollover prevention system for wheel loader [J]. 吉林大学学报(工学版), 2010, 40(05): 1262-1267.
[14] LI Li-ming,CHEN Yi-yi,LI Ning,CAI Yu-chun. Seismic performance of outer-shell connection of cold-formed square tubular column and H-shaped steel beam [J]. 吉林大学学报(工学版), 2010, 40(01): 67-0071.
[15] LI Li-ming1,2, LI Ning3, CHEN Zhi-hua4, JIANG Xin-liang4 . Anti-seismic test on concretefilled square steel tube column [J]. 吉林大学学报(工学版), 2008, 38(04): 817-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!