Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2367-2375.doi: 10.13229/j.cnki.jdxbgxb20210320

Previous Articles    

Experiment on seismic behavior of assembled shear wall joints connected by ultra high performance concrete

Yong-zhi GONG1(),Jin-hua KUANG1,Fu-long KE1,Quan ZHOU2,Xiao-yong LUO1   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.CSCEC Fifth Engineering Bureau Co. ,Ltd. ,Changsha 410004,China
  • Received:2021-04-12 Online:2022-10-01 Published:2022-11-11

Abstract:

Based on the new building structure system with external shear and internal frame, a method of connecting prefabricated concrete shear walls joints with ultra-high performance concrete (UHPC) is proposed. In order to explore the seismic performance of shear walls under this connection mode, low cyclic tests were carried out on one ordinary cast-in-place concrete shear wall and two fabricated concrete shear walls connected by UHPC.Test results show that:The failure law of shear wall specimens under the two connection modes is the same, which is flexural failure;Under the same axial compression ratio, the ultimate flexural capacity of prefabricated concrete shear walls connected by UHPC in 10d is only 5.61% lower than that of ordinary cast-in-place concrete shear walls;UHPC can ensure the strength of assembled concrete shear wall connection section, and the prefabricated shear walls under UHPC connection have good seismic performance and good ductility. During the whole loading process, the three shear wall specimens show similar stiffness degradation and energy consumption change rules. On the basis of the experiment, the finite element software ABAQUS simulation shows that the finite element simulation results are in good agreement with the experimental results. When the lap length of steel bars reaches 16d, the bearing capacity, stiffness and the lifting amount of corner are in the best condition.

Key words: structural engineering, assembled, shear wall, ultra-high performance concrete (UHPC), seismic performance

CLC Number: 

  • TU375.2

Fig.1

Schematic diagram of external shear and internal frame structure system"

Fig.2

Construction scheme of UHPC connecting prefabricated concrete shear wall"

Fig.3

Dimensions and reinforcement details of test members"

Table 1

UHPC mix ratio"

水泥粉煤灰硅灰石英砂减水剂钢纤维
690240172991.8

30.9

(2.8%)

187.3120

Table 2

Sample number and basic parameters"

试件编号轴压比预制墙体高/mm底部连接情况
W10.2-杯口基础
W20.22880UHPC,连接段120 mm
W30.22850UHPC,连接段150 mm

Table 3

Mechanical properties of reinforcement"

钢材类型直径/mm

屈服强度fy

/MPa

抗拉强度fu

/MPa

HRB40014439.8596.8
12459.5604.2
8431.0612.7

Fig.4

Test loading device diagram"

Fig.5

Loading system"

Fig.6

Final failure morphology diagram of eachspecimen"

Fig.7

Hysteretic curve and skeleton curve of each specimen"

Table 4

Horizontal force and displacement line of specimen in different States"

试件

编号

加载

方向

开裂点屈服点峰值点破坏点

延性

系数

Fcr/kNΔcr/mmFy/kNΔy/mmFp/kNΔp/mmFu/kNΔu/mm

W1

正向240.01.2550.07.1689.130.7495.561.87.91
反向270.01.4500.07.1687.425.7523.550.6
平均255.01.3525.07.1688.328.2509.556.2

W2

正向397.03.9593.07.1641.221.2505.740.56.29
反向405.02.6615.06.3658.221.7535.043.8
平均401.03.3604.06.7649.721.5520.442.2
W3正向200.02.7414.118.3502.640.6420.074.05.35
反向200.05.1240.07.8331.430.9273.066.1
平均200.03.9327.113.1417.035.8346.570.1

Fig.8

Stiffness degradation curve"

Table 5

Equivalent viscous damping coefficient of each characteristic point of specimen"

特征点等效粘滞阻尼系数ξeq
W1W2W3
开裂点0.230.200.17
屈服点0.170.180.12
峰值点0.180.250.13
破坏点0.220.240.15

Fig.9

Comparison diagram of test phenomena"

Fig.10

Comparison of load-displacement curves"

Fig.11

Finite element model analysis of specimens with different reinforcement lap lengths"

1 赵唯坚, 郭婉楠, 金峤, 等. 预制装配式剪力墙结构竖向连接形式的发展现状[J]. 工业建筑, 2014, 44(4): 115-121, 59.
Zhao Wei-jian, Guo Wan-nan, Jin Qiao, et al. Development status of vertical connection forms of prefabricated shear wall structures[J]. Industrial Architecture, 2014, 44(4): 115-121, 59.
2 李宁波, 钱稼茹, 叶列平, 等. 竖向钢筋套筒挤压连接的预制钢筋混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(1): 31-40.
Li Ning-bo, Qian Jia-ru, Ye Lie-ping, et al. Experimental study on seismic behavior of precast reinforced concrete shear walls connected by vertical reinforced sleeve compression[J]. Journal of Building Structure, 2016, 37(1): 31-40.
3 王墩, 吕西林, 卢文胜. 带接缝连接梁的预制混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(10): 1-11.
Wang Dun, Lv Xi-lin, Lu Wen-sheng. Experimental study on seismic behavior of precast concrete shear walls with jointed beams[J]. Journal of Building Structures, 2013, 34(10): 1-11.
4 张海顺. 预制混凝土结构插入式预留孔灌浆钢筋锚固搭接试验研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2009.
Zhang Hai-shun. Experimental study on anchorage lap of grouted reinforcement with inserted pre-hole in precast concrete structure[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2009.
5 Gu Qian, Dong Ge, Wang Xiang, et al. Research on pseudo-static cyclic tests of precast concrete shear walls with vertical rebar lapping in grout-filled constrained hole[J]. Engineering Structures, 2019, 189: 396-410.
6 钱稼茹, 杨新科, 秦珩, 等. 竖向钢筋采用不同连接方法的预制钢筋混凝土剪力墙抗震性能试验[J]. 建筑结构学报, 2011, 32(6): 51-59.
Qian Jia-ru, Yang Xin-ke, Qin Heng, et al. Experimental study on seismic performance of precast reinforced concrete shear walls with different connection methods for vertical reinforcement[J]. Journal of Building Structures, 2011, 32(6): 51-59.
7 钱稼茹, 彭媛媛, 秦珩, 等. 竖向钢筋留洞浆锚间接搭接的预制剪力墙抗震性能试验[J]. 建筑结构, 2011, 41(2): 7-11.
Qian Jia-ru, Peng Yuan-yuan, Qin Hang, et al. Experimental study on seismic performance of prefabricated shear wall with mortar anchor indirectly overlapped with vertical reinforcement holes [J]. Building Structure, 2011, 41(2): 7-11.
8 姜洪斌, 陈再现, 张家齐, 等. 预制钢筋混凝土剪力墙结构与拟静力试验研究[J]. 建筑结构学报, 2011, 32(6): 34-40.
Jiang Hong-bin, Chen Zai-xian, Zhang Jia-qi, et al. Study on precast reinforced concrete shear wall structure and quasi-static test[J]. Journal of Building Structures, 2011, 32(6): 34-40.
9 姜洪斌, 张海顺, 刘文清, 等. 预制混凝土插入式预留孔灌浆钢筋搭接试验[J]. 哈尔滨工业大学学报, 2011, 43(10): 18-23.
Jiang Hong-bin, Zhang Hai-shun, Liu Wen-qing, et al. Lap test of precast concrete grouting reinforcement with inserted reserved holes[J]. Journal of Harbin Institute of Technology, 2011, 43(10): 18-23.
10 Wang De-hui, Shi Cai-jun, Wu Ze-mei, et al. A review on ultra high performance concrete: part II.hydration microstructure and pro perties [J]. Construction and Building Materials, 2015, 96: 368-377.
11 Yoo D Y, Banthia N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review [J]. Cement and Concrete Composites,2016, 73(5): 267-280.
12 Alkaysi M, El-Tawil S. Factors affecting bond development between ultra high performance concrete (UHPC) and steel bar reinforcement [J]. Construction and Building Materials, 2017, 144: 412-422.
13 Shafieifar M, Farzad M, Azizinamini M. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 156: 402-411.
14 Farzad M, Shafieifar M, Azizinamin A. Experimental and numerical study on bond strength between conventional concrete and ultra high-performance concrete (UHPC)[J].Engineering Structures, 2019, 186: 297-305.
15 Wu Ze-mei, Shi Cai-jun, He Wen, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete [J]. Construction and Building Materials, 2016, 103: 8-14.
16 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1): 141-149.
Wang De-hui, Shi Cai-jun, Wu Lin-mei. Research and application of ultra-high performance concrete in China[J]. Silicate Bulletin, 2016, 35(1): 141-149.
17 邵旭东, 邱明红. 基于UHPC材料的高性能装配式桥梁结构研发[J]. 西安建筑科技大学学报: 自然科学版, 2019, 51(2): 160-167.
Shao Xu-dong, Qiu Ming-hong. Research and development of high performance fabricated bridge structure based on UHPC material[J]. Journal of Xi 'an University of Architecture and Technology (Natural Science Edition), 2019, 51(2): 160-167.
18 Safdar M, Matsumoto T, Kakuma K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157: 448-460.
19 Xu Shen-chun, Wu Cheng-qing, Liu Zhong-xian, et al. Experimental investigation of seismic behavior of ultra-high performance steel fiber reinforced concrete columns[J]. Engineering Structures, 2017, 152: 129-148.
20 童小龙, 方志, 罗肖. 活性粉末混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(1): 21-30.
Tong Xiao-long, Fang Zhi, Luo Xiao. Experimental study on seismic behavior of reactive powder concrete shear walls[J]. Journal of Building Structures, 2016, 37(1): 21-30.
21 郑七振, 刘阳阳, 龙莉波,等. 超高性能混凝土连接的装配式现浇混凝土框架抗震性能[J]. 工业建筑, 2019, 49(10): 85-91.
Zheng Qi-zhen, Liu Yang-yang, Long Li-bo, et al. Seismic behavior of fabricated cast-in-place concrete frames connected by ultra-high performance concrete [J]. Industrial Architecture, 2019, 49(10): 85-91.
22 冯军骁, 郑七振, 龙莉波, 等. 超高性能混凝土连接的预制梁受弯性能试验研究[J]. 工业建筑, 2017, 47(8): 59-65.
Feng Jun-xiao, Zheng Qi-zhen, Long Li-bo, et al. Experimental study on flexural behavior of precast beams connected by ultra-high performance concrete[J]. Industrial Architecture, 2017, 47(8): 59-65.
23 ,混凝土结构设计规范 [S].北京:中国建筑工业出版社,2010.
24 ,建筑抗震试验规程 [S].北京:中国建筑工业出版社,2015.
25 王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究[D].长沙: 湖南大学土木工程学院,2016.
Wang Xing-wang. Study on shear behavior of interface between UHPC and ordinary reinforced concrete structure[D]. Changsha: School of Civil Engineering, Hunan University, 2016.
[1] Yun-peng CHU,Xin-hui SUN,Ming LI,Yong YAO,Han-jie HUANG. Wind pressures on a circular hyperbolic⁃paraboloid roof subjected to a simulated downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1826-1833.
[2] Yong YAO,Liu-feng SU,Ming LI,Yun-peng CHU,Han-jie HUANG. Wind load characteristics of double⁃sided spherical shell roof under downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 615-625.
[3] Ya-chuan KUANG,Zhe-xuan SONG,Yin-hu LIU,Xiao-fei MO,Liang-ming FU,Shi-quan LUO. Experiment on mechanical properties of new type assembled double-cabin utility tunnel [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 596-603.
[4] Xue-ping FAN,Guang-hong YANG,Zhi-peng SHANG,Xiao-xiong ZHAO,Qing-kai XIAO,Yue-fei LIU. Dynamic reliability fusion prediction of long-span bridge girder considering structural serviceability [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 144-153.
[5] Fu-shou LIU,Qi WEI,Wen-ting XU,Guo-jin TAN. Damage detection of truss structures based on elastic wave propagation and spectral element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2087-2095.
[6] Jian-bin CHEN,Song-ze ZHOU,Feng-yong FEI,Yong-long CHEN,Guo-ping LING. Influences of interference fit and knurling connection type on press fitting failure of assembled camshaft [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1959-1966.
[7] Xue-ping FAN,Guang-hong YANG,Qing-kai XIAO,Yue-fei LIU. Optimal R-vine copula information fusion for failure probability analysis of long-span bridge girder [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1296-1305.
[8] Guang-tai ZHANG,Lu-yang ZHANG,Guo-hua XING,Yin-long CAO,Bao YI. Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 946-955.
[9] Jiang YU,Zhi-hao ZHAO,Yong-jun QIN. Damage of reinforced concrete shear beams based on acoustic emission and fractal [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 620-630.
[10] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[11] Xue-ping FAN,Guang QU,Yue-fei LIU. Bridge extreme stress prediction based on new data assimilation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 572-580.
[12] De-lei YANG,Le-wei TONG. Calculation formula of SCF for CHS⁃CFSHS welded T⁃joints with brace under axial tension [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1891-1899.
[13] WANG Deng-feng, ZHANG Shuai, WANG Yong, CHEN Hui. Optimization design of assembled wheel based on performance of fatigue and 13° impact [J]. 吉林大学学报(工学版), 2018, 48(1): 44-56.
[14] ZHANG Peng, KOU Shu-qing, ZHAO Yong, LIN Bao-jun. Ananlsis of three rollers axial knurling process of assembled camshaft [J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
[15] SU Ying-she, YANG Yuan-yuan. Seismic compression performance of the concrete under high temperature [J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!