Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1601-1611.doi: 10.13229/j.cnki.jdxbgxb.20220858

Previous Articles    

Experiment on seismic performance of prefabricated sidewall joints considering strata restraint effect

Hua-fei HE1(),Zhao-ping LI1(),Rui-an FU2,Shao-lin MA1,Ming-li HUANG1   

  1. 1.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.China Railway Siyuan Survey and Design Group Co. ,Ltd. ,Wuhan 430063,China
  • Received:2022-07-05 Online:2024-06-01 Published:2024-07-23
  • Contact: Zhao-ping LI E-mail:19115020@bjtu.edu.cn;zhpli@bjtu.edu.cn

Abstract:

The conventional quasi-static test methods cannot accurately simulate the force characteristics of underground assembled structures due to the strata-structure interaction problem of underground structural systems. Therefore, a pseudo-static test method considering strata constraint effect is proposed, called strata restraint-pseudo-static method. The effects of strata restraint effect on the damage mode, load carrying capacity and energy dissipation capacity of prefabricated sidewall specimens with mortise-tenon joints (MTWJ), and cast-in-place sidewall (CWJ) specimens were investigated. The test results show that the presence of the strata restraint effect improves the load-bearing capacity and energy dissipation of the prefabricated sidewall specimens, but aggravates concrete plastic damage, which is most evident in prefabricated sidewall specimens with mortise-tenon joints. The numerical model that can respond to the seismic performance of MTWJ specimens is proposed, and the results show that the strata restraint load has a large effect on the bearing capacity, but it is not significant to improve the energy dissipation capacity of the mortise-tenon joint.

Key words: geotechnical engineering, prefabricated sidewall structure, strata restraint effect, experimental study, numerical simulation, seismic performance

CLC Number: 

  • U451

Fig.1

Relationship between underground structure and strata effect"

Fig.2

Mechanical model of pseudo-static method"

Fig.3

Mechanical model of strata restraint-pseudo-static method"

Fig.4

Model for horizontal foundation spring coefficient of response displacement method"

Fig.5

MTWJ specimen and strain gauge arrangement (unit: mm)"

Fig.6

CWJ specimen and strain gauge arrangement (unit: mm)"

Table 1

Strength testing of concrete and reinforcement materials"

类型强度/MPa强度/MPa
混凝土55.1(抗压)2.9(抗拉)
钢筋447(屈服)645(极限)

Fig.7

Test setup"

Fig.8

Loading schedule for displacements and soil loads"

Fig.9

Cracks development and failure mode of CWJ specimen"

Fig.10

Damage state and crack distribution of MTWJ specimen"

Fig.11

Skeleton curve of test specimens"

Table 2

Test results of bearing capacity"

试件编号加载方向屈服点峰值点极限点

延性系数

μ=Δu/Δy

位移/mm荷载/kN位移/mm荷载/kN位移/mm荷载/kN
CWJ正向33.83611.2752.03682.7156.09580.301.66
负向-35.91-702.53-51.99-802.68-55.74-682.281.55
MTWJ正向19.44232.6250.55330.9555.63281.312.86
负向-30.84-444.03-55.18-526.69-59.55-447.691.93

Fig.12

Hysteresis loops of sidewall specimens at peak point position"

Fig.13

Contact relationship and finite element model of mortise-tenon joint"

Fig.14

Constraint relationship of the specimens"

Fig.15

Comparison of finite element simulation results and experimental data"

Fig.16

Effect of axial pressure ratio on load capacity and energy dissipation capacity"

Fig.17

Effect of soil restraint load on load capacity and energy dissipation capacity"

1 Yang X, Lin F. Prefabrication technology for underground metro station structure[J]. Tunnelling and underground space technology, 2021, 108: No.103717.
2 李兆平, 李凯旋, 吕书清, 等. 装配式地铁车站结构双榫槽式接头应力演变规律试验研究[J]. 中国铁道科学, 2018, 39(5): 15-21.
Li Zhao-ping, Li Kai-xuan, Shu-qing Lyu, et al. Experimental study on stress evolution rule of double tenon-groove joints for prefabricated metro station structure[J]. China Railway Science, 2018, 39(5): 15-21.
3 李兆平,李守庆,苏会锋. 装配式地铁车站结构双榫槽接头抗弯刚度研究[J]. 土木工程学报, 2017, 50(): 14-18.
Li Zhao-ping, Li Shou-qing, Su Hui-feng, et al. Study on the bending stiffness for double tenon-groove joints of metro station constructed by using prefabricated structure[J]. China Civil Engineering Journal, 2017, 50(Sup.1): 14-18.
4 杨秀仁, 黄美群, 林放. 地铁车站预制装配式结构注浆式榫槽接头弯曲抵抗作用特性研究[J]. 土木工程学报, 2020, 53(2): 33-40.
Yang Xiu-ren, Huang Mei-qun, Lin Fang. Research on bending resistance characteristics of grouted mortise-tenon joints for prefabricated metro station structures[J]. China Civil Engineering Journal, 2020, 53(2): 33-40.
5 杨秀仁, 林放, 黄美群. 地铁车站预制装配式结构注浆式单榫接头抗弯刚度试验研究[J]. 土木工程学报, 2020, 53(3): 38-43.
Yang Xiu-ren, Lin Fang, Huang Mei-qun. Experimental research on flexural rigidity of grouted single mortise-tenon joints for prefabricated metro station structures[J]. China Civil Engineering Journal, 2020, 53(3): 38-43.
6 Ding P, Tao L, Yang X, et al. Three-dimensional dynamic response analysis of a single-ring structure in a prefabricated subway station[J]. Sustainable Cities and Society, 2019, 45: 271-286.
7 Tao L, Ding P, Shi C, et al. Shaking table test on seismic response characteristics of prefabricated subway station structure[J]. Tunnelling and Underground Space Technology, 2019, 91: No.102994.
8 Tao L, Ding P, Yang X, et al. Comparative study of the seismic performance of prefabricated and cast-in-place subway station structures by shaking table test[J]. Tunnelling and Underground Space Technology, 2020, 105: No.103583.
9 He H, Li Z. Effect mechanism of connection joints in fabricated station structures[J]. Applied Sciences, 2021, 11(24): No.11927.
10 杨秀仁. 我国预制装配式地铁车站建造技术发展现状与展望[J]. 隧道建设, 2021, 41(11): 1849-1870.
Yang Xiu-ren. Development and prospect of construction technology for prefabricated metro station in China[J]. Tunnel Construction, 2021, 41(11): 1849-1870.
11 路林海,王国富,王婉婷,等. 地铁车站基坑预制桩-墙结构设计与受力分析[J]. 铁道工程学报, 2017, 34(10): 93-98.
Lu Lin-hai, Wang Guo-fu, Wang Wan-ting, et al. Research on the structure design and mechanics analysis of the precast pile-retaining wall for metro station[J]. Journal of Railway Engineering Society, 2017, 34(10): 93-98.
12 Liu H, Xu C, Du X. Seismic response analysis of assembled monolithic subway station in the transverse direction[J]. Engineering Structures, 2020, 219: No.110970.
13 Liu H, Yan Q, Du X. Seismic performance comparison between precast beam joints and cast-in-place beam joints[J]. Advances in Structural Engineering, 2017, 20(9): 1299-1314.
14 杜修力,刘洪涛,路德春,等. 装配整体式地铁车站侧墙底节点抗震性能研究[J]. 土木工程学报, 2017, 50(4): 38-47.
Du Xiu-li, Liu Hong-tao, Lu De-chun, et al. Study on seismic performance of sidewall joints in assembled monolithic subway station[J]. China Civil Engineering Journal, 2017, 50(4): 38-47.
15 Kawashima K. Seismic design of underground structures in soft ground—a review[J/OL]. [2022-06-25].
16 刘顺, 唐小微, 栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报: 工学版, 2023, 53(1): 159-169.
Liu Shun, Tang Xiao-wei, Luan Yi-xiao. Influence of rayleigh damping coefficient on seismic response of subway structure in liquefiable soil[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 159-169.
17 庄海洋, 王雪剑, 王瑞, 等. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 2017, 39(10): 1761-1769.
Zhuang Hai-yang, Wang Xue-jian, Wang Rui, et al. Characteristics of lateral deformation of soil-subway dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1761-1769.
18 庄海洋,吴滨,陈国兴. 土-大型地铁地下车站结构动力接触效应研究[J]. 防灾减灾工程学报, 2014, 34(6): 678-686.
Zhuang Hai-yang, Wu Bin, Chen Guo-xing. Study on dynamic contact properties of soil-subway underground structure interaction system[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(6): 678-686.
19 Sun Q, Dias D, Sousa L R. Soft soil layer-tunnel interaction under seismic loading[J]. Tunnelling and Underground Space Technology, 2020, 98: No.103329.
20 Qiu D, Chen J, Xu Q. Comparative numerical analysis on dynamic effects of underground large scale frame structures under seismic waves[J]. Tunnelling and Underground Space Technology, 2019, 83: 35-50.
21 Qiu D, Chen J, Xu Q. Dynamic responses and damage forms analysis of underground large scale frame structures under oblique SV seismic waves[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 216-220.
22 江志伟,刘晶波. 埋深对地下结构振动台模型试验结果的影响[J]. 工程力学, 2021, 38 (): 209-215.
Jiang Zhi-wei, Liu Jing-bo. Influence of buried depth on the seismic response of underground structures in 1-a shaking table tests[J]. Engineering Mechanics, 2021, 38 (Sup.1): 209-215.
23 Liu C, Zhang S L, Zhang D L, et al. Model tests on progressive collapse mechanism of a shallow subway tunnel in soft upper and hard lower composite strata[J]. Tunnelling and Underground Space Technology, 2022, 131: No.104824.
24 . 建筑抗震试验规程 [S].
25 . 城市轨道交通结构抗震设计规范 [S].
26 Kawajima K. A Seismic Design of Underground Structure[M]. Kajima: Kajima Institute Publishing Co. Ltd, 1994.
27 . 混凝土结构设计规范 [S].
28 封坤, 何川, 肖明清. 高轴压作用下盾构隧道复杂接缝面管片接头抗弯试验[J]. 土木工程学报, 2016, 49(8): 99-110.
Feng Kun, He Chuan, Xiao Ming-qing. Bending tests of segment joint with complex interface for shield tunnel under high axial pressure[J]. China Civil Engineering Journal, 2016, 49(8): 99-110.
29 Ding W Q, Chen X Q, Jin Y L, et al. Flexural behavior of segmental joint containing double rows of bolts: experiment and simulation[J]. Tunnelling and Underground Space Technology, 2021, 112: No.103940.
30 柳献, 叶宇航, 刘震, 等. 连接螺栓对类矩形盾构隧道结构极限承载力影响的试验研究与分析[J]. 土木工程学报, 2018, 51(8): 81-88.
Liu Xian, Ye Yu-hang, Liu Zhen, et al. Experimental investigation and analysis on effect of connecting bolts on ultimate bearing capacity of quasi-rectangular shield tunnel[J]. China Civil Engineering Journal, 2018, 51(8): 81-88.
31 王建宁, 庄海洋, 马国伟, 等. 软土层场地复杂地铁地下车站结构地震反应分析[J]. 振动与冲击, 2019, 38(19): 115-122.
Wang Jian-ning, Zhuang Hai-yang, Ma Guo-wei, et al. Seismic responses of a complicated subway underground station in soft soil layers[J]. Journal of Vibration and Shock, 2019, 38(19): 115-122.
32 周海祚, 郑刚, 李笑穹, 等. 软土地铁结构非线性地震反应分析[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(4): 361-368.
Zhou Hai-zuo, Zheng Gang, Li Xiao-qiong, et al. Nonlinear seismic responses analysis of subway structure in soft soil[J]. Journal of Tianjin University(Science and Technology), 2016, 49(4): 361-368.
[1] Shu-mei LOU,Yi-ming LI,Xin LI,Peng CHEN,Xue-feng BAI,Bao-jia CHENG. Thermal deformation behavior of graphene nanosheets reinforced 7075Al based on BP neural network and Arrhenius constitutive equation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1237-1245.
[2] Qiu ZHAO,Peng CHEN,Yu-wei ZHAO,Ao YU. Overall mechanical performance of jointless bridges with arch structure behind abutment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1016-1027.
[3] Yi-gang WANG,Yu-peng WANG,Hao ZHANG,Si-an ZHAO. Identification and analysis of aerodynamic noise sources in the bogie area of high⁃speed trains [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 346-355.
[4] Wei-hua ZHANG,Jia-ming LIU,Li-peng XIE,Heng DING. Lane⁃changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 469-477.
[5] Xing WEI,Ya-jie GAO,Zhi-rui KANG,Yu-chen LIU,Jun-ming ZHAO,Lin XIAO. Numerical simulation of residual stress field of stud girth weld in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 198-208.
[6] Zhi ZHENG,Pei YUAN,Xuan-hui JIN,Si-si WEI,Bo GENG. Experimental on composite flexible anti⁃collision fender of bridge pier [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2581-2590.
[7] Fang-cheng LIU,Jiang WANG,Meng-tao WU,Guo-bin BU,Jie HE. Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2542-2553.
[8] Ming LEI,Si-yang YIN,De-ling WANG,Ji-cheng ZHANG,Shi-wei LU. Seismic performance simulation of high⁃rise concrete core tube based on static nappe analysis algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2573-2580.
[9] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Guo-jin TAN. Temperature field and frost heaving analysis of prefabricated box culvert based on field monitoring [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2321-2331.
[10] Ying-xin HUI,Jia-wei CHEN. Squeezed branch pile groups optimization method based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2089-2098.
[11] Zhen-yong DI,Xin-hui YANG,Xiao LIN. Seismic performance analysis of building double beam column joints based on load displacement hysteretic curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2061-2066.
[12] Zhen-liang LIU,Cun-bao ZHAO,Yun-peng WU,Mi-na MA,Long-shuang MA. Life⁃cycle seismic resilience assessment of highway bridge networks using data⁃driven method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1695-1701.
[13] Feng WANG,Shuang-rui LIU,Jia-ying WANG,Jia-ling SONG,Jun WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Size and shape effects of wind drag coefficients for porous structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1677-1685.
[14] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Dong-ming ZHOU,Guo-jin TAN,Xiao-ming HUANG. Acoustic characterization of bond⁃slip process between basalt fiber reactive powder concrete and steel strand [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1819-1832.
[15] Chun-li WU,Shi-ming HUANG,Kui LI,Zheng-wei GU,Xiao-ming HUANG,Bing-tao ZHANG,Run-chao YANG. Analysis of pier action effect under flood based on numerical simulation and statistical analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1612-1620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!