Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1258-1265.doi: 10.13229/j.cnki.jdxbgxb.20240756
Previous Articles Next Articles
Ning GUO1,2(
),Xiao-chen HU1,2,De-cun DONG1(
)
CLC Number:
| 1 | Aguilera V, Allio S, Benezech V,et al.Using cell phone data to measure quality of service and passenger flows of Paris transit system[J].Transportation Research Part C: Emerging Technologies, 2014, 43(1):198-211. |
| 2 | Zhong G, Wan X, Zhang J,et al.Characterizing passenger flow for a transportation hub based on mobile phone data[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 18(6): 1507-1518. |
| 3 | Niu Q, Wu H F, Gao C Y, et al. Laser-based bidirectional pedestrian counting via height map guided regression and voting[J]. Signal, Image and Video Processing, 2017, 11(5): 897-904. |
| 4 | 余燕. 基于红外CCD与激光测距仪融合的行人检测技术研究[D]. 长春: 吉林大学电子科学与工程学院, 2008. |
| Yu Yan. Study on the pedestrian detection technology based on the information fusion of infrared CCD and laser measurement system[D]. Changchun: College of Electronic Science and Engineering, Jilin University, 2008. | |
| 5 | 王连震, 王晖, 罗孟德. 基于压力传感器的出租车客流检测系统[J]. 交通科技与经济, 2018, 20(5): 29-31. |
| Wang Lian-zhen, Wang Hui, Luo Meng-de. A detection system of taxi passenger flow based on pressure sensor[J] Technology & Economy in Areas of Communications, 2018, 20(5): 29-31. | |
| 6 | Sidenbladh H, Black M J. Learning image statistics for Bayesian tracking[C]∥Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver: Canada, 2001: 709-716. |
| 7 | 方晨晨, 周继彪, 董升, 等. 基于BP神经网络的地铁车厢拥挤度预测方法[J]. 交通信息与安全, 2018, 36(6): 47-53. |
| Fang Chen-chen, Zhou Ji-biao, Dong Sheng, et al. A method of forecast congestion of subway carriages based on BP neural network[J]. Journal of Transport Information and Safety, 2018,36(6): 47-53. | |
| 8 | 杨谱. 基于视频图像处理的地铁站拥挤风险预测与人群疏散[D]. 北京: 北京交通大学机械与电子控制工程学院学院, 2018. |
| Yang Pu. Risk prediction and crowd evacuation of subway station congestion based on video image processing[D]. Beijing: School of Mechanical,Electronic and Control Engineering, Beijing Jiaotong University, 2018. | |
| 9 | 谈世磊, 别雄波, 卢功林, 等. 基于YOLOv5网络模型的人员口罩佩戴实时检测[J]. 激光杂志, 2021, 42(2): 147-150. |
| Tan Shi-lei, Bie Xiong-bo, Lu Gong-lin, et al. Real time detection of personnel mask wearing based on YOLOv5 network model[J]. Laser Journal, 2021, 42 (2): 147-150. | |
| 10 | Gao C Q, Li P, Zhang Y J, et al. People counting based on head detection combining Adaboost and CNN in crowded surveillance environment[J]. Neurocomputing, 2016(208): 108-116. |
| 11 | Song D, Qiao Y, Corbetta A. Depth driven people counting using deep region proposal network[C]∥IEEE International Conference on Information and Automation(ICIA), Macau,China, 2017: 416-421. |
| 12 | Alqahtani F, Banks J, Chandran V,et al.Investigating the efficiency of a three-dimensional facial tracker using stereo camera arrangements[C]∥International Conference on Artificial Intelligence and Big Data,Chengdu,China, 2021: 463-468. |
| 13 | Tran C K.Face recognition based on similarity feature-based selection and classification algorithms and wrapper model[J].EJournal Publishing, 2019(3):357-362. |
| 14 | Shen G, Jamshidi F, Dong D, et al. Metro pedestrian detection based on mask R-CNN and spatial-temporal feature[C]∥IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP),Shanghai,China, 2020: 173-178. |
| 15 | 邱芳, 李玉峰, 孔才华. 基于YOLOv5m和注意力机制融合的地铁车厢乘客实时检测[J]. 微处理机, 2022, 43(6): 53-58. |
| Qiu Fang, Li Yu-feng, Kong Cai-hua. Real-time detection of passengers in subway carriages based on the fusion of YOLOv5m and attention mechanism[J]. Microprocessors, 2022, 43(6): 53-58. | |
| 16 | Lin S D, Zhu K X, Chen F,et al.Align-Yolact: a one-stage semantic segmentation network for real-time object detection[J].Journal of Ambient Intelligence and Humanized Computing, 2023,14(2):863-870. |
| 17 | 张馨, 董承梁, 汪晓臣, 等.基于改进YOLOv5s的列车车厢客流密度检测方法研究[J]. 铁路计算机应用, 2022, 31(10): 10-16. |
| Zhang Xin, Dong Cheng-liang, Wang Xiao-chen, et al. Detection method of passenger flow density in train carriage based on improved YOLOv5s[J]. Railway Computer Application, 2022, 31(10): 10-16. | |
| 18 | 周飞, 郭杜杜, 王洋, 等. 基于改进YOLOv8的交通监控车辆检测算法[J]. 计算机工程与应用, 2024, 60(6): 110-120. |
| Zhou Fei, Guo Du-du, Wang Yang, et al. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance[J]. Computer Engineering and Applications,2024,60(6): 110-120. | |
| 19 | 葛雯, 姜添元. 改进YOLO与Deepsort检测跟踪算法的研究[J]. 计算机仿真, 2022, 39(5): 186-190. |
| Ge Wen, Jiang Tian-yuan. Research on improved YOLO and deepsort detection and tracking algorithms[J].Computer Simulation, 2022, 39(5): 186-190. |
| [1] | Ai-guo LEI,Qi-zhou HU,Xiao-yu WU,Si-yuan QU. Game model of high⁃speed railway delay and passenger choice behavior under incomplete information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3496-3504. |
| [2] | Ming-hui YAO,Wei-chao WANG,Qi-liang WU,Yan NIU. Passenger flow prediction of urban public transportation hubs based on real-time data features and XGBoost algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3302-3308. |
| [3] | Qing⁃ying LAI,Jun LIU,Ruo⁃yu ZHAO,Yong⁃ji LUO,Ling⁃yun MENG,Ya⁃zhi XU. Optimal trajectory planning for middle⁃to⁃high speed maglev based on dynamic programming with mutative spacing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 749-756. |
| [4] | MENG Pin-chao, LI Xue-yuan, JIA Hong-fei, LI Yan-zhong. Short-time rail transit passenger flow real-time prediction based on moving average [J]. 吉林大学学报(工学版), 2018, 48(2): 448-453. |
|