Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1275-1286.doi: 10.13229/j.cnki.jdxbgxb.20230784

Previous Articles     Next Articles

Data-driven prediction of departure state for tail vehicles in queues at signalized intersections

Kai-ming LU1,2(),Yan-yan CHEN1,2,Yao TONG1,2,Jian ZHANG1,2,Yong-xing LI1,2(),Ying LUO1,2   

  1. 1.School of Urban Transportation,Urban Construction Department,Beijing University of Technology,Beijing 100124,China
    2.Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China
  • Received:2013-07-26 Online:2025-04-01 Published:2025-06-19
  • Contact: Yong-xing LI E-mail:luakaiming@emails.bjut.edu.cn;liyx@bjut.edu.cn

Abstract:

Aiming at the problem that the traditional queue tail vehicle departure state prediction model is difficult to adapt to the uncertainty of queue dissipation, a queue tail vehicle departure state prediction model driven by trajectory data is proposed. By analyzing the shapes of queue dissipation trajectories and potential influencing factors, the uncertainty of departure state of tail vehicles is uncovered. Starting from the two stages of queue waiting and vehicle start-up, a feature set that influences the tail vehicle departure state is proposed. The extreme gradient boosting algorithm is employed to construct the prediction model, incorporating the SHapley Additive exPlanations(SHAP) interpretable machine learning framework to dissect the contributions of features, and to determine the optimal feature combination and model parameters. The research results indicate that the proposed XGBoost-based departure time prediction model achieves an average mean absolute percentage error(MAPE) of 5.74%, which is improved by 10% approximately compared with the kinematic model. The MAPE for the queue departure speed is 9.98%, improved about 6% over the kinematic model. Furthermore, the performance of the proposed model surpasses three commonly used machine learning methods of random forest, decision trees, and multi-layer perceptron neural networks. The research outcomes provide technical support for adjusting the minimum green light time of intersection signals and eco-driving of connected vehicles in the vehicle-road cooperative environment.

Key words: engineering of communications and transportation system, queue dissipation characteristic, the departure time of tail vehicles in queues, the departure speed of tail vehicles in queues, XGBoost, SHAP

CLC Number: 

  • U491.1

Fig.1

Video acquisition area"

Fig.2

Vehicle trajectory smoothing sample during queue dissipation process"

Fig.3

Time-spatial diagrams of four typical queue dissipation trajectories"

Fig.4

Relationship diagram of tail vehicle departure time with queue length(sample size: 583)"

Fig.5

Relationship diagram of tail vehicle departure speed with queue length(sample size: 583)"

Table 1

Feature set influencing the tail vehicle departure state"

符号时刻/阶段特征变量变量类型
Y1驶离时间/s连续
Y2驶离速度/(km·h-1连续
x1S1尾车车型离散
x2S1尾车相邻前车车型离散
x3T0排队长度/veh连续
x4T0尾车前方车队大车比连续
x5T0尾车前方车辆间距平均值/m连续
x6T0尾车前方车辆间距标准差/m连续
x7S2尾车启动车速/(km·h-1连续
x8S2尾车相邻前车启动车速/(km·h-1连续
x9S2尾车前方车辆启动车速平均值/(km·h-1连续
x10S2尾车前方车辆启动车速标准差/(km·h-1连续
x11S2头车启动车速/(km·h-1连续
x12T1尾车前方车辆速度平均值/(km·h-1连续
x13T1尾车前方车辆速度标准差/(km·h-1连续
x14T1尾车前方车辆间距平均值/m连续
x15T1尾车前方车辆间距标准差/m连续
x16T1尾车前方车队大车比连续
x17T1尾车前方车队长度/m连续

Fig.6

Schematic diagram of start-up speed"

Fig.7

SHAP diagram of feature importance to departure time prediction of tail vehicle"

Fig.8

SHAP diagram of feature importance to departure speed prediction of tail vehicle"

Table 2

Feature consists for departure time prediction of tail vehicle"

组合编号特征组成
1所有特征
2T0时刻所有特征+头车启动车速
3T0时刻特征
4

初始排队长度+所有车间距相关特征+

头车启动车速

5T0时刻排队长度+所有车间距相关特征
6排队长度
7Based_3
8Based_5
9Based_6
10Based_8

Table 3

Feature consists for departure speed prediction of tail vehicle"

组合编号特征组成
1所有特征
2T0时刻所有特征
3T0时刻排队长度+所有车间距相关特征
4T0时刻所有特征+头车启动车速
5Based_8
6Based_6
7Based_5
8Based_4
9Based_1

Fig.9

Prediction comparison of tail vehicle departure time under different feature consists"

Fig.10

Prediction comparison of tail vehicle departure speed under different feature consists"

Table 4

Optimal values of main parameters of model"

模型主要参数取值范围模型参数最优取值

排队尾车

驶离时间

排队尾车驶离速度
基本学习器的深度21038
基本学习器的数量[100,800]700400
学习率[0.01,0.5]0.20.03
损失减少阈值[0,1]0.70.1
L1正则化[0.0001,100]10.000 1
L2正则化[0.0001,100]1010
子集最小权重2,200]610
样本子采样[0.6,0.9]0.70.8
列子采样[0.6,1]0.80.9

Table 5

Parameter calibration results of theory model"

平均期望加速

度/(m·s-2

标定

取值

平均消散速率

/(s·veh-1

标定

取值

ad,50.691wˉ51.277
ad,60.647wˉ61.277
ad,70.607wˉ71.308
ad,80.594wˉ81.318
ad,90.538wˉ91.346
ad,100.496wˉ101.356
ad,110.492wˉ111.356
ad,120.465wˉ121.363
ad,130.464wˉ131.388
ad,140.454wˉ141.401
ad,150.438wˉ151.379
ad,160.434wˉ161.342
ad,170.421wˉ171.315
ad,180.389wˉ181.313

Table 6

Performance comparison of tail vehicle departure time prediction models"

模型MAPE/%RMSE (km·h-1
XGBoost5.741.74
随机森林10.583.75
决策树12.845.01
MLP神经网络30.397.33
理论模型14.645.78

Fig.11

Comparison of departure time of tail vehicle predicted by XGBoost-based model and theoretical model"

Table 7

Performance comparison of tail vehicle departure speed prediction models"

模型MAPE/%RMSE (km·h-1
XGBoost9.983.48
随机森林10.063.44
决策树13.344.73
MLP神经网络13.274.45
理论模型15.783.50

Fig.12

Comparison of departure speed of tail vehicle predicted by XGBoost-based model and theoretical model"

[1] 徐洪峰, 王殿海. BRT优先控制交叉口的机动车相位固定最小绿灯时间计算方法[J]. 吉林大学学报: 工学版, 2009, 39(): 92-97.
Xu Hong-feng, Wang Dian-hai. Absolute minimum green calculation for vehicle phase at signalized intersections with bus rapid transit signal priority[J].Journal of Jilin University(Engineering and Technology Edition),2009, 39(Sup.1): 92-97.
[2] 刘东波, 沈莉潇, 代磊磊, 等. 基于多目标雷达数据的单点交通信号控制方法[J]. 吉林大学学报: 工学版, 2022, 52(10): 2456-2465.
Liu Dong-bo, Shen Li-xiao, Dai Lei-lei, et al. Traffic signal control method at isolated intersections based on multi-target radar data[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2456-2465.
[3] 刘显贵, 王晖年, 洪经纬, 等. 网联环境下信号交叉口车速控制策略及优化[J]. 交通运输系统工程与信息. 2021, 21(2): 82-90.
Liu Xian-gui, Wang Hui-nian, Hong Jing-wei, et al. Traffic speed control strategy and optimization at signalized intersections under connected environment [J]. Journal of Transportation Systems Engineering and Information Technology,2021, 21(2): 82-90.
[4] 杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72.
Yang Lan, Zhao Xiang-mo, Wu Guo-yuan, et al. A review of collaborative eco-driving strategies for intelligent connected vehicles[J]. Journal of Traffic and Transportation Engineering,2020, 20(5): 58-72.
[5] Luo Q, Yuan J, Chen X, et al. Analyzing start-up time headway distribution characteristics at signalized intersections[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: No.122348.
[6] Mondal S, Gupta A. Discharge characteristics analysis of queued-up vehicles at signal-controlled intersections under heterogeneous traffic conditions[J]. International Journal of Civil Engineering, 2019, 17(5): 619-628.
[7] Jin X, Zhang Y, Wang F, et al. Departure headways at signalized intersections: a log-normal distribution model approach[J]. Transportation Research Part C: Emerging Technologies,2009, 17(3): 318-327.
[8] 唐克双, 董可然, 黄志荣, 等. 信号交叉口排队消散特性实证对比[J]. 同济大学学报: 自然科学版, 2015, 43(11): 1689-1695.
Tang Ke-shuang, Dong Ke-ran, Huang Zhi-rong, et al. Empirical comparison of queuing dissipation characteristics at signalized intersections[J]. Journal of Tongji University(Natural Science), 2015, 43(11): 1689-1695.
[9] Zhan X, Li R, Ukkusuri S V. Lane-based real-time queue length estimation using license plate recognition data[J]. Transportation Research Part C: Emerging Technologies,2015, 57: 85-102.
[10] Mei Y, Gu W, Chung E C S, et al. A Bayesian approach for estimating vehicle queue lengths at signalized intersections using probe vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 233-249.
[11] 谈超鹏, 姚佳蓉, 唐克双. 基于抽样车辆轨迹数据的信号控制交叉口排队长度分布估计[J]. 中国公路学报. 2021, 34(11): 282-295.
Tan Chao-peng, Yao Jia-rong, Tang Ke-shuang. Queue length distribution estimation at signalized intersections based on sampled vehicle trajectory data[J]. China Journal of Highway and Transport,2021, 34(11): 282-295.
[12] He X, Liu H X, Liu X. Optimal vehicle speed trajectory on a signalized arterial with consideration of queue[J]. Transportation Research Part C: Emerging Technologies,2015, 61: 106-120.
[13] Wu L, Ci Y, Wang Y, et al. Fuel consumption at the oversaturated signalized intersection considering queue effects: a case study in Harbin, China[J]. Energy, 2020, 192: No.116654.
[14] Yang H, Rakha H, Ala M V. Eco-cooperative adaptive cruise control at signalized intersections considering queue effects[J]. IEEE Transactions on Intelligent Transportation Systems,2017, 18(6): 1575-1585.
[15] Dong H, Zhuang W, Chen B, et al. Enhanced eco-approach control of connected electric vehicles at signalized intersection with queue discharge prediction[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5457-5469.
[16] Dong H, Zhuang W, Yin G, et al. Energy-optimal velocity planning for connected electric vehicles at signalized intersection with queue prediction[C]∥IEEE ASME International Conference on Advanced Intelligent Mechatronics(AIM), Boston, USA, 2020: 238-243.
[17] Ye F, Hao P, Qi X, et al. Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1378-1389.
[18] 徐洪峰, 郑明明, 李克平. 机动车相位固定最小绿灯时间计算方法[J]. 公路交通科技, 2008(5): 105-110.
Xu Hong-Feng, Zheng Ming-ming, Li Ke-ping.Absolute minimum green time calculation for vehicle phase[J]. Journal of Highway and Transportation Research and Developmen, 2008(5): 105-110.
[19] Elefteriadou L. The highway capacity manual 6th edition: a guide for multimodal mobility analysis[J]. Institute of Transportation Engineers. 2016, 86(4): 14-18.
[20] 罗小芹, 王殿海, 金盛. 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报:工学版, 2019, 49(3): 695-704.
Luo Xiao-qin, Wang Dian-hai, Jin Sheng. Traffic signal actuated control at isolated intersections for heterogeneous traffic[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 695-704.
[21] Shi X P, Wong Y D, Li M Z F, et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention, 2019, 129: 170-179.
[22] Shi R, Xu X, Li J, et al. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization[J]. Applied Soft Computing, 2021, 109:No. 107538.
[23] 魏田正, 魏雯, 李海梅, 等. 基于XGBoost算法的危险场景驾驶行为模式分析及安全评估[J]. 交通信息与安全, 2022, 40(5): 53-60.
Wei Tian-zheng, Wei Wen, Li Hai-mei, et al. An analysis of driving behavior model and safety assessment under risky scenarios based on an XGBoost algorithm[J]. Journal of Transport Information and Safety, 2022, 40(5): 53-60.
[24] 赵晓华, 亓航, 姚莹, 等. 基于可解释机器学习框架的快速路立交出口风险预测及致因解析[J]. 东南大学学报:自然科学版, 2022, 52(1): 152-161.
Zhao Xiao-hua, Qi Hang, Yao Ying, et al. Risk prediction and causation analysis of expressway interchange exits based on interpretable machine learning framework[J]. Journal of Southeast University(Natural Science Edition),2022, 52(1): 152-161.
[25] Roger E, Torlay L, Gardette J, et al. A machine learning approach to explore cognitive signatures in patients with temporo-mesial epilepsy[J]. Neuropsychologia, 2020, 142: No.107455.
[26] 陈秀锋, 田家斌, 石英杰, 等. 基于排队消散模型的干线协调控制[J]. 科学技术与工程, 2018, 18(10): 279-283.
Chen Xiu-feng, Tian Jia-bin, Shi Ying-jie, et al. Arterial coordination control based on queuing dissipation model[J]. Science Technology and Engineering, 2018, 18(10): 279-283.
[27] 赵巍, 徐汉清. 长周期倒计时信号控制对排队消散特性的影响[J]. 城市交通, 2016, 14(6): 67-74.
Zhao Wei, Xu Han-qing. Impacts of signal with long cycle and duration countdown on queue discharge at signalized intersections[J]. Urban Transport of China, 2016, 14(6): 67-74.
[28] 王殿海, 郭佳林, 蔡正义. 基于自动车牌识别数据的混合交通流饱和流率实时估计[J]. 交通运输系统工程与信息, 2021, 21(2): 37-43.
Wang Dian-hai, Guo Jia-lin, Cai Zheng-yi. Real-time estimation of saturated flow rate of mixed traffic flow based on automatic license plate recognition data[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 37-43.
[1] Yi-yong PAN,Jia-cong XU,Yi-wen YOU,Yong-jun QUAN. Multi-scale spatial heterogeneity analysis of influencing factors of ride-hailing travel demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1567-1575.
[2] He-shan ZHANG,Meng-wei FAN,Xin TAN,Zhan-ji ZHENG,Li-ming KOU,Jin XU. Dense small object vehicle detection in UAV aerial images using improved YOLOX [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1307-1318.
[3] Jiao-rong WU,Xu-dong LIU. Analysis of influence of built environment of spatial units of different housing types on commuting mode choice [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 554-565.
[4] Fa-cheng CHEN,Guang-quan LU,Qing-feng LIN,Hao-dong ZHANG,She-qiang MA,De-zhi LIU,Hui-jun SONG. Review of drivers' takeover behavior in conditional automated driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 419-433.
[5] Yong-ming HE,Jia FENG,Kun WEI,Ya-nan WAN. Analysis on influencing factors of vehicle braking sideslip in curved section of superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 591-602.
[6] Sheng CHANG,Hong-fei LIU,Nai-wei ZOU. H loop shaping robust control of vehicle tracking on variable curvature curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2141-2148.
[7] Zhao-wei QU,Lin LI,Yong-heng CHEN,Chang-jian WU. Traffic characteristics and safety analysis of long interval U-turn intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2206-2213.
[8] Yong-ming HE,Cong QUAN,Kun WEI,Jia FENG,Ya-nan WAN,Shi-sheng CHEN. Perceptual fusion method of vehicle road cooperation roadside unit in superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1923-1934.
[9] Guo-zhu CHENG,Lin SHENG,Hao-yu WANG,Tian-jun FENG. Safety evaluation method for pedestrians crossing street at signalized intersection considering secondary conflict of right-turn vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1903-1912.
[10] Ming-ye ZHANG,Min YANG,Yu LI,Shi-yu HUANG,Qing-yun LI. Optimal electric bus scheduling with multiple vehicle types considering coordinated recharging strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1293-1301.
[11] Da-yi QU,Ke-kun ZHANG,Yuan GU,Tao WANG,Hui SONG,Shou-chen DAI. Analysis of lane⁃changing decision⁃making behavior and molecular dynamics modeling for autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 700-710.
[12] Liang XU,Jing-hou XIAO,Wan-wan SONG,Song ZHOU. Three⁃point bending fatigue properties of carbon fiber composite laminates [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 400-409.
[13] Bin HU,Yi-quan CAI,Xin LUO,Zi-bin MAO,Jun-wei LI,Meng-yu GUO,Jian WANG. Theory and experiment of high⁃speed seed filling in limited gear⁃shaped side space based on seeds group stress [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 574-588.
[14] Xing WEI,Yong-qi ZHANG,Jun-ming ZHAO,Hui-jun WANG,Lin XIAO. Hot spot stress concentration factor for welded skewed-T joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3478-3485.
[15] De-lin LI,Jun-xian CHEN,Yong-gang WANG,Lu WANG,Zhao-qing SHEN. Identification of driving behavior on steep sharp curves based on latent class model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3526-3533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .