Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1567-1575.doi: 10.13229/j.cnki.jdxbgxb.20230789

Previous Articles     Next Articles

Multi-scale spatial heterogeneity analysis of influencing factors of ride-hailing travel demand

Yi-yong PAN(),Jia-cong XU,Yi-wen YOU,Yong-jun QUAN   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2023-07-27 Online:2025-05-01 Published:2025-07-18

Abstract:

In order to explore the influential mechanism of multi-scale ride-hailing travel demand, the travel demand of ride-hailing are analyzed based on the multi-source data. Constructs a multi-scale geographically weighted regression (MGWR) model with short and long distance ride-hailing travel demand as the dependent variable. The effects of built environmental attributes such as road network, land use, population density and public transportation on the demand for ride-hailing and their spatial heterogeneity were revealed. The model results show that the fit of the multi-scale geographical weighted regression model is better than the traditional geographical weighted regression (GWR) model and the ordinary least square (OLS) model, and the influential factors for ride-hailing travel demand have significant spatial heterogeneity. The primary roads density is positively correlated with the short-distance ride-hailing in the city center, and negatively correlated with long-distance ride-hailing in the city periphery. Population density is positively correlated with long-distance ride-hailing in the suburbs, and negatively correlated with the demand for short-distance ride-hailing in the central urban area. Short-distance ride-hailing competes with public transport in the urban centers, while long-distance ride-hailing complements the lack of public transport services around the city. The findings can not only dynamically optimize vehicle configuration and scheduling, but also promote the sustainable development of ride-hailing and shared mobility.

Key words: engineering of communications and transportation system, ride-hailing shared mobility, spatial heterogeneity, built environment, multi-scale geographically weighted regression

CLC Number: 

  • U491

Fig. 1

Overview of the study area"

Table 1

Descriptive statistics results of variables"

变量描述平均值标准差
因变量
LDT

工作日长距离网约车

订单量

1 280.193 796.45
SDT

工作日短距离网约车

订单量

1 280.376 034.85
道路网指标
主干路X1主干路密度/(km·km-23.633.33
次干路X2次干路密度/(km·km-26.4413.19
支路X3支路密度/(km·km-24.063.44
土地利用指标
人口分布X4人口密度/(人·km-23 928.266 048.32
餐饮服务X5餐饮服务设施POI数量24.0841.51
公司企业X6公司企业POI数量23.8540.70
购物服务X7购物服务设施POI数量67.51119.56
金融服务X8金融服务设施POI数量3.047.17
科教服务X9科教文化服务设施POI数量15.4825.57
生活服务X10生活服务设施POI数量68.14117.94
休闲服务X11休闲服务设施POI数量9.3116.78
医疗服务X12医疗机构设施POI数量8.9014.93
政府机构X13政府单位POI数量11.5517.36
住宿服务X14酒店住宿设施POI数量3.459.04
商务住宅X15小区住宅POI数量8.6918.44
风景名胜X16景点服务设施POI数量0.932.76
公共交通指标
地面公交X17公交站点数量4.634.48
地铁X18地铁站点数量0.651.91

Table 2

Multicollinearity test and spatial autocorrelation test results"

变量

长距离

网约车

短距离

网约车

空间自相关VIF

回归

系数

回归

系数

Moran's IZP
LDT0.452193.6130.000
SDT0.376161.9720.000
主干路0.063***0.057***0.10243.3610.0001.112

人口

分布

0.200***0.164***0.359156.4900.0001.441

公司

企业

0.103***0.093***0.20186.0610.0001.601

购物

服务

0.253***0.190***0.20588.1960.0002.325

休闲

服务

0.266***0.264***0.255108.8420.0002.077

医疗

服务

-0.115***-0.160***0.10344.0250.0001.622

商务

住宅

0.256***0.465***0.323137.6490.0002.279

地面

公交

-0.052***-0.250***0.297125.9700.0002.167

Table 3

Comparison results of GWR, OLS and MGWR models"

模型长距离网约车出行需求 (LDT)短距离网约车需求 (SDT)
AICCR2R2Adj带宽AICCR2R2Adj带宽
OLS3 344.3080.6020.6001 7343 540.1290.5540.5521 734
GWR1 311.5930.9360.914751 250.9370.9380.91775
MGWR627.8780.9530.939[61,417]-312.4000.9740.966[47,1 733]

Table 4

MGWR model estimation results"

变量平均值标准差最小值中位数最大值带宽
LDT常数项-0.1180.240-0.332-0.2170.82461
主干路0.0190.069-0.1180.0020.53661
人口分布0.0780.088-0.1290.0690.71997
公司企业0.0080.069-0.2130.0010.39961
购物服务0.0380.111-0.139-0.0020.496409
休闲服务0.1140.145-0.0290.0460.74661
医疗服务0.0540.0350.0070.0400.154417
商务住宅0.0300.088-0.2040.0100.47261
地面公交0.0590.088-0.0390.0250.47968
SDT常数项-0.1430.165-0.236-0.2050.76061
主干路0.0130.055-0.0600.0000.49959
人口分布0.0240.052-0.0980.0050.32261
公司企业0.0050.050-0.1800.0010.35961
购物服务0.0180.070-0.1960.0030.48347
休闲服务0.0530.111-0.0110.0050.58061
医疗服务0.0040.037-0.073-0.0010.24154
商务住宅0.0490.109-0.0600.0040.57347
地面公交-0.0060.000-0.007-0.006-0.0051 733

Fig. 2

Spatial distribution of regression coefficients of MGWR model"

[1] 陈喜群. 网约共享出行研究综述[J]. 交通运输系统工程与信息, 2021, 21(5): 77-90.
Chen Xi-qun. A survey of research on network-sharing travel [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 77-90.
[2] Gehrke S R, Felix A, Reardon T G. Substitution of ride-hailing services for more sustainable travel options in the greater Boston region[J]. Transportation Research Record, 2019, 2673(1): 438-446.
[3] Acheampong R A, Siiba A, Okyere D K, et al. Mobility-on-demand: An empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102638.
[4] 钟军, 林岩, 杭宇. 中国城市网约车服务对公交使用量的影响[J]. 交通运输系统工程与信息, 2020, 20(5): 234-239.
Zhong Jun, Lin Yan, Hang Yu. Impact of ride-hailing service on use of public transport in China's cities [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 234-239.
[5] Javid M A, Abdullah M, Ali N. Travellers' perceptions about ride-hailing services in Lahore: An extension of the theory of planned behavior[J]. Asian Transport Studies, 2022, 8: 100083.
[6] 袁亮, 吴佩勋. 城市居民对网约车与出租车的选择意愿及影响因素研究: 基于江苏省调查数据的 Logistic 分析[J]. 软科学, 2018, 32(4): 120-123.
Yuan Liang, Wu Pei-xun. Study on the choice and influence factors of urban residents' selection of network-booking and taxis: Logistic analysis based on the survey data of Jiangsu province[J]. Soft Science, 2018, 32(4): 120-123.
[7] Hou Y, Garikapati V, Weigl D, et al. Factors influencing willingness to pool in ride-hailing trips[J]. Transportation Research Record, 2020, 2674(5): 419-429.
[8] Huang G, Qiao S, Yeh A G O. Spatiotemporally heterogeneous willingness to ridesplitting and its relationship with the built environment: A case study in Chengdu, China[J]. Transportation Research Part C: Emerging Technologies, 2021, 133: 103425.
[9] Barajas J M, Brown A. Not minding the gap: Does ride-hailing serve transit deserts?[J]. Journal of Transport Geography, 2021, 90: 102918.
[10] Zheng Z, Zhang J, Zhang L, et al. Understanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: A fine-scale empirical study from China[J]. Cities, 2022, 126: 103706.
[11] Wang S, Noland R B. Variation in ride-hailing trips in Chengdu, China[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102596.
[12] 许心越,孔庆雪,李建民,等.建成环境对轨道交通客流的时空异质性影响分析[J].交通运输系统工程与信息,2023,23(4):194-202.
Xu Xin-yue, Kong Qing-xue, Li Jian-min, et al. Analysis of spatio-temporal heterogeneity impact of built environment on rail transit passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023,23(4):194-202.
[13] 尹超英,邵春福,王晓全,等.考虑空间异质性的建成环境对通勤方式选择的影响[J].吉林大学学报: 工学版, 2020,50(2):543-548.
Yin Chao-ying, Shao Chun-fu, Wang Xiao-quan, et al. Influence of built environment on commuting mode choice considering spatial heterogeneity[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(2):543-548.
[14] Yu H, Peng Z R. Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression[J]. Journal of Transport Geography, 2019, 75: 147-163.
[15] 马书红,廖国美,黄岩, 等. 建成环境对交通小区地铁通勤客流的异质性影响[J].吉林大学学报:工学版, 2024, 54 (7): 1913-1922.
Ma Shu-hong, Liao Guo-mei, Huang Yan, et al. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (7): 1913-1922.
[16] An R, Wu Z, Tong Z, et al. How the built environment promotes public transportation in Wuhan: A multiscale geographically weighted regression analysis[J]. Travel Behaviour and Society, 2022, 29: 186-199.
[17] 龙雪琴,赵欢,周萌,等.成都市建成环境对网约车载客点影响的时空分异性研究[J].地理科学,2022,42(12):2076-2084.
Long Xue-qin, Zhao Huan, Zhou Meng, et al. Spatiotemporal heterogeneity of the impact of built environment in Chengdu on online car-hailing passengers' pick-up points[J]. Scientia Geographica Sinica, 2022, 42(12): 2076-2084.
[18] Liu X, Gong L, Gong Y, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43: 78-90.
[19] Chen C, Feng T, Ding C, et al. Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model[J]. Journal of Transport Geography, 2021, 96: 103172.
[20] Hayes A F, Cai L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation[J]. Behavior Research Methods, 2007, 39: 709-722.
[21] Du M, Cheng L, Li X, et al. Spatial variation of ridesplitting adoption rate in Chicago[J]. Transportation Research Part A: Policy and Practice, 2022, 164: 13-37.
[22] Thompson E S, Saveyn P, Declercq M, et al. Characterisation of heterogeneity and spatial autocorrelation in phase separating mixtures using Moran's I[J]. Journal of Colloid and Interface Science, 2018, 513: 180-187.
[23] Vandenbulcke G, Dujardin C, Thomas I, et al. Cycle commuting in Belgium: Spatial determinants and 're-cycling'strategies[J]. Transportation Research Part A: Policy and Practice, 2011, 45(2): 118-137.
[24] Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1): 17-23.
[25] Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28: 281-298.
[1] Kai-ming LU,Yan-yan CHEN,Yao TONG,Jian ZHANG,Yong-xing LI,Ying LUO. Data-driven prediction of departure state for tail vehicles in queues at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1275-1286.
[2] He-shan ZHANG,Meng-wei FAN,Xin TAN,Zhan-ji ZHENG,Li-ming KOU,Jin XU. Dense small object vehicle detection in UAV aerial images using improved YOLOX [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1307-1318.
[3] Jiao-rong WU,Xu-dong LIU. Analysis of influence of built environment of spatial units of different housing types on commuting mode choice [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 554-565.
[4] Fa-cheng CHEN,Guang-quan LU,Qing-feng LIN,Hao-dong ZHANG,She-qiang MA,De-zhi LIU,Hui-jun SONG. Review of drivers' takeover behavior in conditional automated driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 419-433.
[5] Yong-ming HE,Jia FENG,Kun WEI,Ya-nan WAN. Analysis on influencing factors of vehicle braking sideslip in curved section of superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 591-602.
[6] Guang-yue NIAN,Hai-xiao PAN,Jian SUN. Exploring relationship between urban built environment and road traffic performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 141-149.
[7] Zhao-wei QU,Lin LI,Yong-heng CHEN,Chang-jian WU. Traffic characteristics and safety analysis of long interval U-turn intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2206-2213.
[8] Yong-ming HE,Cong QUAN,Kun WEI,Jia FENG,Ya-nan WAN,Shi-sheng CHEN. Perceptual fusion method of vehicle road cooperation roadside unit in superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1923-1934.
[9] Shu-hong MA,Guo-mei LIAO,Yan HUANG,Jun-jie ZHANG. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1913-1922.
[10] Guo-zhu CHENG,Lin SHENG,Hao-yu WANG,Tian-jun FENG. Safety evaluation method for pedestrians crossing street at signalized intersection considering secondary conflict of right-turn vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1903-1912.
[11] Ming-ye ZHANG,Min YANG,Yu LI,Shi-yu HUANG,Qing-yun LI. Optimal electric bus scheduling with multiple vehicle types considering coordinated recharging strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1293-1301.
[12] Da-yi QU,Ke-kun ZHANG,Yuan GU,Tao WANG,Hui SONG,Shou-chen DAI. Analysis of lane⁃changing decision⁃making behavior and molecular dynamics modeling for autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 700-710.
[13] De-lin LI,Jun-xian CHEN,Yong-gang WANG,Lu WANG,Zhao-qing SHEN. Identification of driving behavior on steep sharp curves based on latent class model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3526-3533.
[14] Zhi ZHENG,Pei YUAN,Xuan-hui JIN,Si-si WEI,Bo GENG. Experimental on composite flexible anti⁃collision fender of bridge pier [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2581-2590.
[15] Guo-zhu CHENG,Lin SHENG,Hao ZHAO,Tian-jun FENG. Exclusive phase setting condition of signalized intersection based on risk analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1962-1969.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Gui-ping,Jia Ya-zhou,Shen Gui-xiang,Qiao Wei-wei . Failure analysis and reliability improvement measures of machining
center based on failure density proportion
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 119 -0122 .
[2] HUANG Xin-Lin, WANG Gang, LIU Chun-Gang. Distortion model based on JPEG2000[J]. 吉林大学学报(工学版), 2010, 40(03): 852 -0855 .
[3] CHEN Bing-Kun, SHEN Gui-Xiang, ZHANG Ying-Zhi, WANG Xiao-Feng, GAO Wen-Li, WANG Zhi-Qiong. Dynamical criticality analysis of CNC machine tool based on random and fuzzy theory[J]. 吉林大学学报(工学版), 2010, 40(增刊): 262 -0265 .
[4] Liu Han-bing;Zhang Miao;Wei Jian.

Multigrid method for structure dynamic response analysis

[J]. 吉林大学学报(工学版), 2008, 38(03): 619 -0623 .
[5] ZHOU Feng-dao, WANG Jin-yu, TANG Hong-zhong, ZHANG He, ZHOU Ji-yu. Multi-frequency digital drive signal generation technology in near surface electromagnetic detection domain[J]. 吉林大学学报(工学版), 2013, 43(03): 682 -687 .
[6] LI Zhi-yang, Havyarimana Claver, LI Ya-lan. Large size high quality 3D imaging in the air using low resolution spatial light modulators[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 459 -462 .
[7] ZHANG Tie-hua,WANG Shao-jun,LIU Di-ru,YUAN Yuan,YU Ya-li,YIN Yong-guang. Optimization of exopolysaccharide extraction process from Tibetan spiritual mushroom by pulsed electric fields[J]. 吉林大学学报(工学版), 2011, 41(03): 882 -886 .
[8] KOU Shu-qing, YANG Shen-hua, HUANG Liang-ju, FU Pei-fu. The Applications of Constrained Divided-flow Technique to Cold Precision Forging Spur Gears[J]. 吉林大学学报(工学版), 2000, 30(02): 19 -23 .
[9] ZHONG Yu-lin, WEN Xu-hui, LIU Jun, LIU Zhi-hong. Development of IGBT-based intelligent power module for electric vehicle[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 316 -320 .
[10] CAO Jing-hua, KONG Fan-sen, RAN Yan-zhong, SONG Rui-chen. Back pressure controller design of air compressor based on fuzzy self-adaptive PID control[J]. 吉林大学学报(工学版), 2018, 48(3): 781 -786 .