吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 365-371.

Previous Articles     Next Articles

Finite element analysis of blade wheel strength in hydrodynamic tractor-retarder assembly under traction condition

YAN Qing-dong1,2, CUI Hong-wei1, WEI Wei1,2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. National Key Lab of Vehicle Transmission, Institute of Technology, Beijing 100081, China
  • Received:2010-12-19 Online:2012-03-01 Published:2012-03-01

Abstract: A finite element analysis model was built for the blade wheel strength of a certain hydrodynamic tractor-retarder assembly based on the one-way fluid-solid interaction theory. The boundary conditions and the loads of the model were analyzed. The calculation and its result reprocessing were conducted. Through the case analysis, the construction strength of the blade wheel of the hydrodynamic tractor-retarder was studied under the traction condition. The equivalent stress distribution and the overall deformation state of the blade wheel under limiting condition were obtained. An effective method was provided for the blade wheel strength analysis of the hydrodynamic tractor-retarder assembly.

Key words: turn and control of fluid, hydrodynamic tractor-retarder assembly, traction condition, fluid-solid interaction(FSI), finite element method(FEM)

CLC Number: 

  • TH137.332
[1] 刘然. 液力变矩减速装置控制策略研究. 北京: 北京理工大学机械与车辆学院, 2009. Liu Ran. Research on control strategy for the tractor-brake hydraulic torque converter. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2009.

[2] 钱若军,董石麟,袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008, 14 (1): 3-15. Qian Ruo-jun, Dong Shi-lin, Yuan Xing-fei. Advances in research on fluid-structure interaction theory[J]. Spatial Structures, 2008, 14 (1): 3-15.

[3] 李吉元. 牵引-制动型液力变矩器流场分析及一体化设计研究. 北京: 北京理工大学机械与车辆学院, 2005. Li Ji-yuan. CFD analysis and integral research on tractor-brake hydraulic torque converter. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2005.

[4] 王峰,闫清东,王书灵.基于CFD和FEA的液力减速器叶片强度分析[J]. 北京理工大学学报, 2006, 26 (12): 1052-1055. Wang Feng, Yan Qing-dong, Wang Shu-ling. Strength analysis of hydraulic retarder rotator blades based on CFD and FEA[J]. Journal of Beijing Institute of Technology, 2006, 26(12): 1052-1055.

[5] 李慧渊. 基于三维流场理论的液力减速器设计研究. 北京: 北京理工大学机械与车辆学院, 2009. Li Hui-yuan. Design and study on the hydraulic retarder based on 3D flow field theory. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2005.

[6] 陆忠东, 吴光强, 殷学仙,等. 液力变矩器流固耦合研究[J]. 汽车技术, 2009 (2): 37-41. Lu Zhong-dong, Wu Guang-qiang, Yin Xue-xian,et al. Study on fluid-solid interaction of torque converter[J]. Automobile Technology, 2009(2): 37-41.

[7] 魏巍, 闫清东, 朱颜. 液力变矩器叶片流固耦合强度分析[J]. 兵工学报, 2008, 29(10): 1158-1162. Wei Wei, Yan Qing-dong, Zhu Yan. Strength analysis of fluid solid interaction field of hydrodynamic torque converter vanes[J]. Acta Armamentarii, 2008, 29(10): 1158-1162.

[8] Wei Wei, Yan Qing-dong, Wu Jing-yan. Research on numerical investigation and test verification of brake performance in a hydrodynamic tractor-retarder assembly[J]. Advanced Materials Research, 2010, 97-101:3357-3361.
[1] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[2] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[3] LIU Yu, LI Peng-fei, ZHANG Yi-min. Analysis and prediction of micro milling deformation of copper thin-wall parts [J]. 吉林大学学报(工学版), 2017, 47(3): 844-849.
[4] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[5] ZHANG Min, LI Song-jing, CAI Shen. Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump [J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[6] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[7] YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi. Development and prospect of digital hydraulic valve and valve control system [J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
[8] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[9] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[10] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[11] ZHUANG Ye, CHEN Yu-hang, YANG Ye-hai, XU Shu-fang. Twin-tube hydraulic shock absorber F-V modeling based on structure parameters [J]. 吉林大学学报(工学版), 2016, 46(3): 732-736.
[12] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[13] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
[14] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, LIU Yu-fei, XI Yuan. Match and simulation analysis of hydraulic system radiator of wheel loader [J]. 吉林大学学报(工学版), 2015, 45(4): 1124-1129.
[15] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin, LYU Jian-sen. Principle and experiment validation of roller tip-vanetype double-stator multi-speed motor [J]. 吉林大学学报(工学版), 2015, 45(4): 1130-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!