吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1494-1505.doi: 10.13229/j.cnki.jdxbgxb201605017

Previous Articles     Next Articles

Development and prospect of digital hydraulic valve and valve control system

YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi   

  1. The State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University,Hangzhou 310027,China
  • Received:2015-03-31 Online:2016-09-20 Published:2016-09-20

Abstract:

The domestic and international research states of digital hydraulic valves and their applications are reviewed from four aspects: electro-mechanical actuators, structure optimization of the valve, parallel high-speed switching valve technology, and new applications of high-speed switching valve. The new hydraulic control methods which can be applied in the digital valves are discussed. The control methods include electrohydraulic flow matching control technology and independent metering control technology, which are commonly used in digital. The characteristics of general digital valve are illustrated using a programmable control valve unit as an example. Recommendations are given in three aspects, including modularization, high response and high efficiency.

Key words: turn and control of fluid, digital fluid power, high-speed on/off valve, hydraulic valve control technology, programmable valve control unit

CLC Number: 

  • TH137.52
[1] 路甬祥. 流体传动与控制技术的历史进展与展望[J]. 机械工程学报,2010,46(10):1-9.
Lu Yong-xiang. Historical progress and prospects of fluid power transmission and control[J]. Chines Journal of Mechanical Engineering, 2010,46(10):1-9.
[2] Achten P. Convicted to innovation in fluid power[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2010, 224(6):619-621.
[3] Kagoshima M, Komiyama M, Nanjo T, et al. Development of new kind of hybrid excavator [J]. Research and Development Kobe Steel Engineering Reports, 2007,57(1):66-69.
[4] Yang Hua-yong, Pan Min. Engineering research in fluid power: a review[J]. Journal of Zhejiang University, A: Science, 2015(16): 427-442.
[5] Ueno H, Okajima A, Tanaka H, et al. Noise measurement and numerical simulation of oil flow in pressure control valves[J]. JSME International Journal, Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermo Physical Properties,1994,37(2):336-341.
[6] Wang Feng, Gu Lin-yi, Chen Ying. A continuously variable hydraulic pressure converter based on high-speed on-off valves[J]. Mechatronics, 2011,21(8):1298-1308.
[7] Linjiama M. Digital fluid power: state of the art[C]∥The 12th Scandinavian International Conference on Fluid Power. Tampere, Finland, 2011: 18-20.
[8] 许仰曾,李达平,陈国贤. 液压数字阀的发展及其工程应用[J]. 流体传动与控制,2010(2):5-9.
Xu Yang-zeng, Li Da-ping, Chen Guo-xian. Development and application of digital valve[J]. Fluid Power Transmission and Control, 2010(2):5-9.
[9] 贾鹏光,吕伟华. 日本数字调速阀静动态性能的研究[J]. 重庆大学学报:自然科学版,1994,17(2):119-125.
Jia Peng-guang, Lyu Wei-hua. Analysis and study to static and dynamic characteristics for a digital speed control valve made in Japan[J]. Journal of Chonoqing University, 1994, 17(2):119-125.
[10] 郜立焕,赵成,赵才. 步进式液压数字阀用永磁式步进电动机的非线性控制[J]. 兰州理工大学学报,2004,30(2):62-65.
Gao Li-huan, Zhao Cheng, Zhao Cai. Nonlinear control of stepmotors step-digital valve with perm anent magnet stepmotor[J]. Journal of Lanzhou University of Technology, 2004, 30(2):62-65.
[11] 何曦光,彭利坤,叶帆. 基于增量式数字阀的液压作动器设计及控制策略研究[J]. 液压气动与密封,2015,30(3):24-27.
He Xi-guang, Peng Li-kun, Ye Fan. Design and control strategy study of hydraulic actuator with incremental digital valve[J]. Hydraulics Pneumatics & Seals,2015,30(3):24-27.
[12] 胡竟湘,李建军,钟定清. 高速开关阀及其发展趋势[J]. 机电产品开发与创新, 2009,22(2):60-62.
Hu Jing-xiang, Li Jian-jun, Zhong Ding-qing. High speed on-off valve and its development trend[J]. Development & Innovation of Machinery & Electrical Products, 2009, 22(2):60-62.
[13] 傅林坚. 大流量高响应电液比例阀的设计及关键技术研究[D]. 杭州: 浙江大学机械工程学院,2010: 10-12.
Fu Lin-jian. Research on the design and the key technology of the elec-hydraulic proportional valve with large flow rate and high responsibility[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2010: 10-12.
[14] Kong Xiao-wu, Li Shi-zhen. Dynamic performance of high speed solenoid valve with parallel coils[J]. Chinese Journal of Mechanical Engineering, 2014, 27:816-821.
[15] Lantela T, Kajaste J, Kostamo J, et al. Pilot operated miniature valve with fast response and high flow capacity[J]. International Journal of Fluid Power, 2014, 15(1): 11-18.
[16] Scheidl R, Gradl C, Kogler H, et al. Investigation of a switch-off time variation problem of a fast switching valve[C]∥ASME/Bath 2014 Symposium on Fluid Power and Motion Control, Bath, UK, 2014.
[17] 张峰. 基于超磁致伸缩材料的气动高速开关阀的设计研究[D]. 杭州: 浙江大学机械工程学院, 2012: 22-23.
Zhang Feng. Design and research on pneumatic high speed on-off valve based on giant magnetostrictive material[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2012: 22-23.
[18] Li Li-yi, Zhang Cheng-min, Yan Bai-ping,et al. Research of a giant magnetostrictive valve with internal cooling structure[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2897-2900.
[19] 李跃松,朱玉川,吴洪涛,等.超磁致伸缩伺服阀用电-机转换器传热及热误差分析[J].农业机械学报,2015,46(2):343-350.
Li Yue-song, Zhu Yu-chuan, Wu Hong-tao, et al. Modeling of heat transfer and displacement error from heat of giant magnetostrictive actuator applied in servovalve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):343-350.
[20] 陆豪, 朱成林, 曾思, 等. 新型 PZT 元件驱动的电液高速开关阀及其大功率快速驱动技术的研究[J]. 机械工程学报, 2002, 38(8): 118-121.
Lu Hao, Zhu Cheng-lin, Zeng Si, et al. Study on the new kind of electro-hydraulic high-speed on-off valve driven by PZT components and its high-powerful and speedy technique[J]. Chines Journal of Mechanical Engineering, 2002, 38(8): 118-121.
[21] 欧阳小平,杨华勇, 蒋昊宜, 等. 新型压电高速开关阀仿真研究[J]. 科学通报,2008,53(14):1737-1741.
Ouyang Xiao-ping, Yang Hua-yong, Jiang Hao-yi, et al. Simulation of high-speed switching valve with new typed piezoelectric[J]. Chinese Science Bulletin, 2008,53(14):1737-1741.
[22] 许有熊, 朱青松. 压电数字阀电-机械转换器设计与分析[J]. 机械设计,2013,30(11):77-82.
Xu You-xiong, Zhu Qing-song. Design and analyze of piezoelectric digital valve mechanical converter[J]. Journal of Machine Design, 2013,30(11):77-82.
[23] Skelton D. Design of a high performance actuation system enabled by energy coupling actuation[D].West Lafayette:Purdue University, 2014.
[24] 周盛. 液压自由活塞发动机运动特性及其数字阀研究[D]. 杭州: 浙江大学机械工程学院, 2006: 21.
Zhou Sheng. Research into dynamic performance and digital valve for hydraulic free piston engine[D]. Hangzhou: College of Mechanical Engineering,Zhejiang University, 2006: 21.
[25] 郁秀峰, 韩秀坤, 李建纯,等. 电控柴油机高速数字开关阀 (HSV) 的特性与应用研究[J]. 车辆与动力技术, 1995,58(4):12-17.
Yu Xiu-feng, Han Xiu-kun, Li Jian-chun, et al. Study on application and performance of HSV in diesel engine with electronic control[J]. Vehicle & Power Technology, 1995,58(4):12-17.
[26] 丁凡, 姚健娣, 笪靖, 等. 高速开关阀的研究现状[J]. 中国工程机械学报, 2011, 9(3): 351-358.
Ding Fan, Yao Jian-di, Da Jing, et al. Advances on high-speed on-off valves[J]. Chines Journal of Mechanical Engineering, 2011, 9(3): 351-358.
[27] Sturman Oded Eddie, Park Woodland. Digital fuel injector, injection and hydraulic valve actuation module and engine and high pressure pump methods and apparatus[P]. US 8,342,153. 2013-01-01.
[28] Tu H C, Rannow M B, Wang M, et al. Design, modeling, and validation of a high-speed rotary pulse-width-modulation on/off hydraulic valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(6): 061002.
[29] 阮健,裴翔,李胜. 2D电液数字换向阀[J]. 机械工程学报,2000,36(3):86-89.
Ruan Jian, Pei Xiang, Li Sheng. 2D digital directional control valve[J]. Chines Journal of Mechanical Engineering, 2000,36(3):86-89.
[30] 江海兵,阮健,李胜,等. 2D电液高速开关阀设计与实验[J].农业机械学报,2015,46(2):328-334.
Jiang Hai-bing, Ruan Jian, Li Sheng, et al. Design and experiment of 2D electrohydraulic high-speed on-off valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):328-334.
[31] Hansen A H, Henrik C P. Avoidance of pressure oscillations in discrete fluid power systems with transmission lines-an analytical approach[C]∥Proceedings of the 9th JFPS International Symposium on Fluid Power, Matsue, Japan, 2014.
[32] Locateli C, Teixeira P, De Pieri E. Digital hydraulic system using pumps and on/off valves controlling the actuator[C]∥8th FPNI Symposium on Fluid Power, Lappeenranta, Finland, 2014.
[33] Linjama M, Vilenius M. Energy-efficient motion control of a digital hydraulic joint actuator[C]∥Proceedings of the JFPS International Symposium on Fluid Power, 2005.
[34] Linjama M, Paloniitty M, Tiainen L. Mechatronic design of digital hydraulic micro valve package[J]. Procedia Engineering, 2015, 106: 97-107.
[35] Siivonen L, Tamlink Ltd. Fault tolerance of digital hydraulics in high dynamic hydraulic system[C]∥The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015.
[36] Kamelreiter M, Kemmetmüller W, Kugi A. Digitally controlled electrorheological valves and their application in vehicle dampers[J]. Mechatronics, 2012, 22(5): 629-638.
[37] Johnston D N. A switched inertance device for efficient control of pressure and flow[C]∥ASME 2009 Dynamic Systems and Control Conference.Califorma,USA,2009: 589-596.
[38] Sell N, Johnston D, Plummer A, et al. A linear valve actuated switched inertance hydraulic system[C]∥The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015.
[39] Clausen M. Fluid controller and a method of detecting an error in a fluid controller[P]. US:8,042,568. 2011-10-25.
[40] Kontz M, Book W. Electronic control of pump pressure for a small haptic backhoe[J]. International Journal of Fluid Power, 2007, 8(2):5-16.
[41] Omberg C J, James P J. Proportional speed control of fluid power devices[P].US:5,319,933. 1994-06-14.
[42] 吴根茂, 邱敏秀, 王庆丰, 等. 新编实用电液比例技术[M]. 杭州:浙江大学出版社,2006:2.
[43] Aoki Y, Uwhara K, Hirose K, et al. Load sensing fluid power systems[J]. SAE Technical Papers, 1994, 103:139-153.
[44] Marani P, Ansaloni G, Paoluzzi R, et al. Test methods for flow sharing directional valves[J]. Power Transmission and Motion Control, 2006: 347.
[45] 刘伟. 挖掘机电液流量匹配控制系统特性研究[D]. 杭州: 浙江大学机械工程学院, 2012: 7.
Liu Wei. Investigation into the characteristics of electrohydraulic flow matching control systems for excavators[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2012: 7.
[46] MettäläK, Djurovic M, Keuper G, et al. Intelligent oil flow management with EFM: the potentials of electrohydraulic flow matching in tractor hydraulics[C]∥The Tenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2007:25-34.
[47] Jansson A, Palmberg J O. Separate controls of meter-in and meter-out orifices in mobile hydraulic systems[J]. SAE Technical Paper, 1990, 99(2):377-383.
[48] Elfving M. A concept for a distributed controller of fluid power actuators[D]. Sweden: Linköping University, 1997.
[49] Bjorn E. Mobile fluid power system design with a focus on energy efficient[D]. Sweden: Linköping University, 2010.
[50] Andersen T O, Münzer M E, Hansen M R. Evaluations of control strategies for separate meter-in separate meter-out hydraulic boom actuation in mobile applications[C]∥The 17th International Conference on Hydraulic and Pneumatics, Ostrava, Czech Republic, 2001.
[51] Yao B, Song L. Energy-saving control of hydraulic systems with novel programmable valves[C]∥Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002:81-91.
[52] Sitte A, Weber J. Structural design of independent metering control systems[C]∥The 13th Scandinavian International Conference on Fluid Power, Linköping, Sweden: 2013.
[53] Vukovic M, Murrenhoff H. Single edge meter out control for mobile machinery[C]∥SME/Bath 2014 Symposium on Fluid Power and Motion Control, Bath, UK, 2014.
[54] Randall T A, Perry L Y. Mathematical modeling of a two spool flow control servovalve using a pressure control pilot[J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(3): 420-427.
[55] 徐兵,丁孺琦,张军辉. 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报:工学版,2015,49(1):93-101.
Xu Bing, Ding Ru-qi, Zhang Jun-hui. Experiment research on individual metering systems of mobile machinery based on coordinate control of pump and valves[J]. Journal of Zhejiang University (Engineering Science), 2015,49(1):93-101.
[56] 危丹锋. 挖掘机双阀芯液压系统控制策略研究[D]. 长沙: 中南大学机电工程学院, 2011.
Wei Dan-feng. Research on control strategies of hydraulic excavator used dual spool valves[D]. Changsha: College of Mechanical Engineering,Central South University, 2011.
[57] 权龙, 廉自生. 应用进出油口独立控制原理改善泵控差动缸系统效率[J]. 机械工程学报,2005,41(3):123-127.
Quan Long, Lian Zi-sheng. Improving the efficiency of pump controlled differential cylinder system with inlet and outlet separately controlled principle[J]. Chinese Journal of Mechanical Engineering,2005,41(3):123-127.
[58] 李振振,黄家海,权龙,等. 基于数字流量阀负载口独立控制系统[J]. 液压与气动,2016(2):17-22.
Li Zhen-zhen, Huang Jia-hai, Quan Long, et al. The independent metering system based on digital flow valve[J]. Hydraulics Pneumatics & Seals,2016(2):17-22.
[59] 王晓娟. 基于负载口独立技术的挖掘机液压系统控制策略研究[D]. 太原:太原科技大学机械工程学院, 2013.
Wang Xiao-juan. Strategies of hydraulic excavator based on independent control[D]. Taiyuan: College of Mechanical Engineering, Taiyuan University of Science & Technology, 2013.
[60] 袁明论. 负载口独立控制的双伺服阀控缸系统研究[D]. 北京:北京理工大学自动化学院, 2015.
Yuan Ming-lun. Research on load port independent controlled double servo valves cylinder system[D].Beijing: School of Automation, Beijing Institute of Technology, 2015.
[61] 丁孺琦. 负载口独立系统多模式控制方法及其工程机械应用[D]. 杭州:浙江大学机械工程学院,2015:3-4.
Ding Ru-qi. The multi-mode control method of the independent metering system and its application in mobile machinery[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2015:3-4.
[62] 焦宗夏, 彭传龙, 吴帅. 工程机械多路阀研究进展与发展展望[J]. 液压与气动,2013(11):1-6.
Jiao Zong-xia, Peng Chuan-long, Wu Shuai. Progress in construction machinery multi-way valve and future trends[J]. Hydraulics Pneumatics & Seals, 2013(11):1-6.
[63] Murrenhoff H, Millos S S. An overview of energy saving architectures for mobile applications[C]∥9th IFK Conference Pproceedings, Aachean, Germany: 2014.
[64] Paloniiyyt M, Linjiama M, Huhtala K. Concept of digital microhydraulic valve system utilising Lamination Technology[C]∥9th IFK Conference Proceedings, Aachean, Germany: 2014.
[65] Turner S B, Lakin D F. Electrohydraulic proportional control valve assemblies[P]. UKP 2,298,291. 1996-02-22.
[66] Yang X, Paik M J, Pfaff J L. Pilot operated control valve having a poppet with integral pressure compensating mechanism[P]. US:6,745,992. 2004-6-8.
[67] Shenouda A. Quasi-static hydraulic control systems and energy savings potential using independent metering four-valve assembly configuration[D].Georgia,USA: Georgia Institute of Technology, 2006: 171-175.
[68] Tabor K A. Velocity based method of controlling an electrohydraulic proportional control valve[P].US:6,775,974. 2004-8-17.
[1] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[2] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[3] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[4] ZHANG Min, LI Song-jing, CAI Shen. Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump [J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[5] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[6] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[7] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[8] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[9] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[10] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
[11] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, LIU Yu-fei, XI Yuan. Match and simulation analysis of hydraulic system radiator of wheel loader [J]. 吉林大学学报(工学版), 2015, 45(4): 1124-1129.
[12] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin, LYU Jian-sen. Principle and experiment validation of roller tip-vanetype double-stator multi-speed motor [J]. 吉林大学学报(工学版), 2015, 45(4): 1130-1138.
[13] JIANG Wan-lu,LU Chuan-qi,ZHU Yong. HHT and fuzzy C-means clustering-based fault recognition for axial piston pump [J]. 吉林大学学报(工学版), 2015, 45(2): 429-436.
[14] DONG Han, LIU Xin-hui, WANG Xin, ZHENG Bo-yuan, LIANG Wei-quan, WANG Jia-yi. Parallel hydraulic hybrid braking regenerative characteristics [J]. 吉林大学学报(工学版), 2014, 44(6): 1655-1663.
[15] MA Wen-xing, LIU Bin, LIU Chun-bao, LIU Hao. Hydrodynamic speed adjusting system and its control of wind turbine [J]. 吉林大学学报(工学版), 2013, 43(05): 1276-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .