吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 414-418.

Previous Articles     Next Articles

Image transition region extraction and segmentation based on information measure

KANG Wen-wei1, KANG Wen-ying2, KANG Xiao-tao1   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;
    2. Cardiovascular Department, The Second Hospital of Jilin University, Changchun 130041, China
  • Received:2012-05-10 Published:2013-06-01

Abstract:

Traditional transition region extraction methods are based on gradient operator.The conventional gradient-based methods are sensitive to noise.According to the characteristics of transition region,the segmentation method based on information measure was presented.Then optimal segmentation threshold was attained according to the transition region histogram.The transition region was obtained by local entropy information measurement.The proposed method depend no more on Llow and Lhigh.The filtering ability of local entropy information measurement improves the ability of proposed method to deal with noises.Experimental results indicate that the proposed method outperforms the other methods.

Key words: image segmentation, transition region extraction, gradient, information measurement, threshold

CLC Number: 

  • TP391

[1] 章毓晋.过渡区和图像分割[J].电子学报,1996,24(1):12-17. Zhang Yu-jin.Transition region and image segmentation[J].Acta Electronica Sinica,1996,24(1):12-17.

[2] Zhang Y J,Gerbrands J J.Transition region determination based thresholding[J].Pattern Recognition Lett,1991,12(1):13-23.

[3] 梁学军,乐宁.基于光强加权梯度算子的图像过渡区算法[J].图像识别与自动化,2001(1):4-7. Liang Xue-jun,Le Ning.Transition region algorithm based on weighted gradient operator[J].Image Recognition and Automatization,2001(1):4-7.

[4] Yan C X,Sang N,Zhang T X.Local entropy-based transition region extraction and thresholding [J].Pattern Recognition Letters,2003,24(16):2935-2941.

[5] 闫成新,桑农,张天序,等.基于局部复杂度的图像过渡区提取与分割[J].红外与毫米波学报,2005,24(4):312-316. Yan Cheng-xin,Sang Nong,Zhang Tian-xu,et al.Image transition region extraction and segmentation based on local complexity[J].Journal of Infrared and Millimeter Waves,2005,24(4):312-316.

[6] Kang Wen-wei,Wang Ke,Chen Wan-zhong,et al.Segmentation of coronary arteries based on transition region extraction [C]//2010 2nd International Asia Conference on Informatics in Control,Automation and Robotics (CAR 2010),2010:333-336.

[7] Kang Wen-wei,Wang Ke,Wang Qing-zhu,et al.Segmentation method based on transition region extraction for coronary angiograms [C]//The 2009 IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2009),2009:905-909.

[8] 王彦春,梁德群,王演.基于图像模糊熵邻域非一致性的过渡区提取与分割[J].电子学报,2008,36(12):2445-2449. Wang Yan-chun,Liang De-qun,Wang Yan.Transition region extraction and segmentation based on image fuzzy entropy neighborhood unhomogeneity[J].Acta Electronica Sinica,2008,36(12):2445-2449.

[9] 康文炜,王珂,张立保,等.基于局部复杂度信息测度的冠脉造影图像分割[J].光电子激光,2011,22(6):954-960. Kang Wen-wei,Wang Ke,Zhang Li-bao,et al.Segmentation method based on local complexity information measurement for coronary angiograms[J].Journal of Optoelectronics Laser,2011,22(6):954-960.

[10] Cemil K,Francis K H Q.A review of vessel extraction techniques and altorithms[J].ACM Computing Surveys,2004,36(2):81-121.

[11] Cruz A L.Accuracy evaluation of different centerline approximations of blood vessels[C]//IEEE TCVG Symposium on Visualization,Eurographics Association,2004:1-11.

[1] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[2] ZHANG Chao-yi, LI Jin-hai, YAN Yue-peng. Improved Tong detection algorithm with double thresholds [J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[3] LI Jia-qi, NI Ji-min, GAO Xu-nan, SHI Xiu-yong, XU Xiao-chuan. Analysis of lubrication performance of floating ring bearing considering radial temperature gradient [J]. 吉林大学学报(工学版), 2017, 47(6): 1782-1790.
[4] XIAO Ming-yao, LI Xiong-fei, ZHANG Xiao-li, ZHANG Liu. Medical image segmentation algorithm based on multi-scale region growing [J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[5] LUO Shi-dong, BA Xiao-hui, WANG Yun, CHEN Jie. Joint strategy for high sensitivity Galileo E1B/C signal acquisition [J]. 吉林大学学报(工学版), 2017, 47(5): 1617-1624.
[6] LIU Rang, WANG De-jiang, ZHANG Liu, ZHOU Da-biao, JIA Ping, DING Peng. Non-uniformity correction and point target detection based on gradient sky background [J]. 吉林大学学报(工学版), 2017, 47(5): 1625-1633.
[7] DONG Qiang, LIU Jing-hong, ZHOU Qian-fei. Improved SURF algorithm used in image mosaic [J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[8] ZHUGE Jing-chang, WU Jun, ZHAN Xiang-lin, YU Zhi-jing. Precise ultrasonic ranging method based on self-adaptive wavelet de-noising [J]. 吉林大学学报(工学版), 2017, 47(4): 1301-1307.
[9] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[10] ZHAO Fu-qun, ZHOU Ming-quan, GENG Guo-hua. Image threshold segmentation with GA-Otsu method and quantitative identification [J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[11] ZHENG Ming, ZHUO Mu-gui, ZHANG Shu-gong, ZHOU You, LIU Gui-xia. Reconstruction for gene regulatory network based on hybrid parallel genetic algorithm and threshold value method [J]. 吉林大学学报(工学版), 2017, 47(2): 624-631.
[12] WAN Cheng-biao, PAN Meng-chun, ZHANG Qi, PANG Hong-feng, ZHU Xue-jun. Magnetic object localization with eigenvalue and eigenvector of tensor [J]. 吉林大学学报(工学版), 2017, 47(2): 655-660.
[13] LIU Hai-ou, ZHANG Guo-xin, XI Jun-qiang, ZHANG Hong-yan, XU Yi. Dynamic load spectrum signal de-noising of tracked vehicle transmission [J]. 吉林大学学报(工学版), 2017, 47(1): 42-49.
[14] XIAO Ming-yao, LI Xiong-fei. Multi-scale 3D Otsu thresholding algorithm based on Gaussian decomposition [J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[15] WANG Pei-zhi, TIAN Di, LONG Tao, LI Di-fei, QIU Chun-ling, LIU Dun-yi. Automatic focusing algorithm for TOF-SIMS zircon sample image [J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!