吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1782-1790.doi: 10.13229/j.cnki.jdxbgxb201706015

• Orginal Article • Previous Articles     Next Articles

Analysis of lubrication performance of floating ring bearing considering radial temperature gradient

LI Jia-qi1, NI Ji-min1, GAO Xu-nan2, SHI Xiu-yong1, XU Xiao-chuan1   

  1. 1.School of Automotive Studies,Tongji University, Shanghai 201804,China;
    2.Faculty of Transport Systems and Mechanical Engineering Systems, Technical University of Berlin,Berlin 10623,Germany
  • Received:2016-08-31 Online:2017-11-20 Published:2017-11-20

Abstract: The temperature model and heat transfer model among inner-film-floating-ring-outer -film of floating ring bearing were established, in which the temperature gradient of the floating ring was taken into consideration. The effect of the temperature gradient on the lubrication performance of the floating ring bearing was discussed. Results show that, taking the radial temperature gradient of the floating ring into consideration, the inner-film temperature increases, the overall frictional power loss and end discharging capacity slightly decrease. With outer eccentricity ratio of 0.4, when the inner film clearance increases from 0.02mm to 0.04 mm, the inner film temperature and total power loss are decreased by 16.0% and 15.9%, respectively. The total power loss increases with the inner circle radius. The lubrication performance of the floating ring bearing can be improved remarkably by appropriately decreasing the inner circle width.

Key words: mechanical parts, mechanical design, radial temperature gradient, heat transfer, structural parameters, inner film temperature, lubrication

CLC Number: 

  • TH133.31
[1] Trippett R J,Li D F. High-speed floating ring bearing test and analysis[J]. ASLE Transactions,1987,27(1):73-81.
[2] Trippett R J. Measured and predicted friction in floating ring bearings[C]//SAE Paper,860075.
[3] Clarke D M, Fall C,Hayden G N,et al. A steady-state model of a floating ring bearing, including thermal effects[J]. ASME Journal of Tribology,1992,114(1):141-149.
[4] Chun S M. A parametric study on bubble lubrication of high-speed journal bearings[J]. Tribology International,2002,35(1):1-13.
[5] Chun S M. Thermohydrodynamic lubrication analysis of high-speed journal bearing considering variable density and variable specific heat[J]. Tribology International,2004,37(2):405-413.
[6] Chun S M. Aeration effects on the performance of a turbocharger journal bearing[J]. Tribology International,2008,41(4):296-306.
[7] Andres L S, Kerth J. Thermal effects on the performance of floating ring bearings for turbochargers[J]. Journal of Engineering Tribology,2004,218(5):1-14.
[8] Andres L S, Gjika K G,Larue G. Rotordynamics of small turbochargers supported on floating ring bearings-highlights in bearing analysis and experimental validation[J]. Journal of Tribology,2007,129(2):391-397.
[9] Andres L S, Barbarie V C,Bhattacharya A, et al. On the effects of thermal energy transport to the performance of (Semi) floating ring bearing systems for automotive turbochargers[J]. Journal of Engineering for Gas Turbings and Power,2012,134(10):1-10.
[10] Holt C,Andres L S,Sahay S,et al. Test response and nonlinear analysis of a turbocharger supported on floating ring bearings[J]. Journal of Vibration and Acoustics,2005,127(2):107-115.
[11] Li J Q,Ni J M, Wang Q W. Lubrication analysis floating ring bearing considering floating ring heat transfer[J]. SAE International Journal of Fuels and Lubricants,2016,9(1):14-22.
[12] Pei Shi-yuan,Xu Hua,Yun Meng,et al. Effects of surface texture on the lubrication performance of the floating ring bearing[J]. Tribology International,2016,102:143-153.
[13] 于晓东,付旭,刘丹,等. 环形腔多油垫静压推力轴承热变形[J]. 吉林大学学报:工学版,2015,45(2):460-465.
Yu Xiao-dong,Fu Xu,Liu Dan,et al. Thermal deformation of annular recess multi-pad hydrostatic thrust bearing[J]. Journal of Jilin University(Engineering and Technology Edition),2015,45(2):460-465.
[14] Chasalevris A. Finite length floating ring bearings:operational characteristics using analytical methods[J]. Tribology International,2016,94:571-590.
[15] Soni S, Vakharia D P. A steady-state performance analysis of a non-circular cylindrical floating ring journal bearing[J]. Journal of Engineering Tribology,2016,231(1):1-16.
[16] 李鹏举,岑少起,郭红. 浮环质量对动静压浮环轴承稳定性的影响[J]. 煤矿机械,2009,30(6):77-79.
Li Peng-ju,Cen Shao-qi,Guo Hong. Influence of mass of floating ring to stability of hybird floating ring bearing[J]. Coal Mine Machinery,2009,30(6):77-79.
[17] 王鸷,任兴民,张引娣,等. 浮环轴承旋转流体的基本研究[J]. 西北工业大学学报,2010,28(4):520-524.
Wang Zhi,Ren Xing-min,Zhang Yin-di,et al. Exploring further basic flow of rotating floating ring bearing[J]. Journal of Nothweastern Polytechnical University,2010,28(4):520-524.
[18] 郭红,张绍林,门日秀,等. 涡轮增压器浮环轴承静特性分析[J]. 润滑与密封,2013,38(11):81-85.
Guo Hong,Zhang Shao-lin,Men Ri-xiu,et al. Static characteristics analysis of turbocharger floating ring bearing[J]. Lubrication Engineering,2013,38(11):81-85.
[19] 张浩,师占群,张顺心,等. 基于质量守恒边界条件的浮环轴承贫油润滑特性理论分析[J].机械工程学报,2014,50(9):100-107.
Zhang Hao, Shi Zhan-qun, Zhang Shun-xin,et al. A theoretical investigation on staved lubricating characteristics of the floating ring bearing based on jacobsson-floberg-olsson boundary condition[J]. Journal of Mechanical Engineering,2014,50(9):100-107.
[20] 郑惠萍,代静,彭立强. 气穴对涡轮增压器浮环轴承油膜力的影响[J].润滑与密封,2015,40(7):60-64.
Zheng Hui-ping,Dai Jing,Peng Li-qiang. Influence of cavitations on floating ring bearing oil film force of turbocharger[J]. Lubircation Engineering,2015,40(7):60-64.
[21] Sun Jun,Deng Mei, Fu Yong-hong,et al. Thermohydrodynamic lubrication analysis of misaligned plain journal bearing with rough surface[J]. ASME Journal of Tribology,2010,132(1):111-118.
[22] 孙军. 曲轴-轴承系统摩擦学、刚度和强度的耦合研究[D]. 合肥:合肥工业大学机械与汽车工程学院,2005.
Sun Jun. Coupling research on tribology,stiffness and strength of crankshaft-bearing system[D]. Heifei:College of Mechanical and Automotive Engineering,Hefei University of Technology,2005.
[1] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[2] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786.
[3] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[4] XU Liang, LAN Jin, WANG Ming-sen, GAO Jian-min, LI Yun-long. Effect of swirl number on heat transfer characteristics of swirling impinging jets [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1483-1491.
[5] WANG Tao, SAN Xiao-gang, GAO Shi-jie, WANG Hui-xian, WANG Jing, NI Ying-xue. Dynamic characteristics of vertical shaft system of photoelectric turntable [J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] LIU Kun, LIU Yong, YAN Jian-chao, JI Shuo, SUN Zhen-yuan, XU Hong-wei. Dynamic analysis of sit-to-stand human motion based on in vitro-sensor detection [J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[7] YOSHINO Tatsuo, FAN Lu-lu, YAN Lei, XU Tao, LIN Ye, GUO Gui-kai. Multiobjective optimization design for dummy chest structure based on MBNWS algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[8] HE Ji-lin, CHEN Yi-long, WU Kang, ZHAO Yu-ming, WANG Zhi-jie, CHEN Zhi-wei. Energy flow analysis of crane hoisting system and experiment of potential energy recovery system [J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[9] XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[10] SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[11] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[12] LIU Zhi-feng, ZHAO Dai-hong, WANG Yu-mo, HUN Lian-ming, ZHAO Yong-sheng, DONG Xiang-min. Relationship between bearing capacity of heavy machine hydrostatic rotary table and temperature field distribution of oil pad [J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[13] CAO Jing-hua, KONG Fan-sen, RAN Yan-zhong, SONG Rui-chen. Back pressure controller design of air compressor based on fuzzy self-adaptive PID control [J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[14] LI Rui, ZHANG Lu-yang, LIU Lin, WU Yue-yuan, CHEN Shi-wei. Magneto-rheological vibration isolation for three-span bridge based on similarity theory [J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[15] CHEN Zhong-min, HOU Li, DUAN Yang, ZHANG Qi, YANG Zhong-xue, JIANG Yi-qiang. Vibration analysis of a new pin-cycloid speed reducer [J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!