吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 387-391.doi: 10.13229/j.cnki.jdxbgxb201402017

• paper • Previous Articles     Next Articles

High-lift effect of bionic slat

GE Chang-jiang1, GE Mei-chen2, LIANG Ping1, ZHANG Zhi-hui1, REN Lu-quan1   

  1. 1. Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130022, China;
    2. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2013-03-15 Online:2014-02-01 Published:2014-02-01

Abstract:

In this paper, a bionic airfoil mimicking the wing of a long-eared owl is proposed. On this basis, a bionic slat without cove and multi-element airfoil is built. In order to reveal high-lift effect of the bionic slat, the corresponding quasi-two-dimensional models are manufactured by rapid manufacturing and prototyping system. Experiments are conducted in a low-turbulence wind tunnel. The results show that the lift coefficient of the bionic airfoil is larger when the angle of attack is less than 5°, but lift coefficient of the bionic multi-element airfoil with slat is larger s when the angle of attack is greater than 5°. The bionic slat can increase the stall angle and the maximum lift coefficient; at the same time, it can also delay the decline of the lift coefficient curve slope in order to prevent the leading-edge separation within a certain range of angle of attack. Furthermore, the flow field around the models is visualized by smoke wire method, which shows the leading-edge separation of the bionic airfoil at low Reynolds numbers. However, the finding does not occur in the flow field of the bionic multi-element airfoil at the same conditions. This superiority may be used as reference in the design of the leading-edge slat or slot.

Key words: engineering bionics, alula, bionic slat, wind tunnel, high-lift effect

CLC Number: 

  • TB17

[1] Soderman P T, Kafyeke F, Boudreau J, et al. Airframe noise study of a Bombardier CRJ-700 aircraft model in the NASA Ames 7-by 10-foot wind tunnel[J]. International Journal of Aeroacoustics, 2004, 3(1): 1-42.

[2] Chow L C, Mau K, Remy H. Landing gear and high lift devices airframe noise research[C]//AIAA Paper, 2002-2408.

[3] Zhaokai Ma. Slat noise attenuation using acoustic liner[C]//AIAA Paper, 2005-3009.

[4] Smith M G, Chow L C, Molin N. Attenuation of slat trailing edge noise using slat gap acoustic liners[C]//AIAA Paper, 2006-2666.

[5] Choudhari M, Khorrami M R, Lockard D P. Slat cove noise modeling: a posteriori analysis of unsteady RANS simulations[C]//AIAA Paper, 2002 -2468.

[6] Takeda K, Ashcroft G B, Zhang X. Unsteady aerodynamics of slat Cove flow in a high-lift device configuration[C]//AIAA Paper, 2001-0706.

[7] 徐成宇, 钱志辉, 刘庆萍, 等. 基于长耳鸮翼前缘的仿生耦合翼型气动性能[J].吉林大学学报: 工学版, 2010, 40 (1): 108-112. Xu Cheng-yu, Qian Zhi-hui, Liu Qing-ping, et al. Aerodynamic performance of bionic coupled foils based on leading edge of long-eared owl wing[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (1): 108-112.

[8] Meseguer J, Franchini S, Perez-Grande I, et al. On the aerodynamics of leading-edge high-lift devices of avian wings[J]. Proc Inst Mech Eng G, 2005, 219: 63-68.

[9] van Der Burg J W, Eliasson P, Delille T, et al. Geometric installation and deformation effects in high-lift flows[C]//AIAA Journal, 2009, 47: 60-70.

[10] Rudnik R. Stall behaviour of the eurolift high-lift configurations[C]//AIAA Paper, 2008-836.

[11] Graham R R. The silent flight of owls[J]. J Roy Aero Soc, 1934, 38: 837-843.

[12] Lilley G M. A study of the silent flight of the owl[C]//AIAA Paper, 1998-2340.

[13] Nachtigall W, Kempf B. Vergleichende untersuchungen zur flugbiologischen funktion des daumenfittichs (Alula spuria) bei vgeln[J]. Z vergl Physiologie, 1971, 71: 326-341.

[14] Liu T S, Kuykendoll K, Rhew R, et al. Avian Wing Geometry and Kinematics[C]//AIAA Journal, 2006, 44: 954-963.

[15] Klan S, Bachmann T, Klaas M, et al. Experimental analysis of the flow field over a novel owl based airfoil[J]. Exp Fluids, 2009, 46: 975-989.

[1] XI Peng,CONG Qian,WANG Qing-bo,GUO Hua-xi. Wear test and anti-friction mechanism analysis of bionic stripe grinding roll [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1787-1792.
[2] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[3] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[4] WANG Hong-chao, SHAN Xi-zhuang, YANG Zhi-gang. Numerical simulation of the influence of ground effect simulation on vehicle cooling system experiment in climate wind tunnel [J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[5] GE Chang-jiang, YE Hui, HU Xing-jun, YU Zheng-lei. Prediction and control of trailing edge noise on owl wings [J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[6] LI Meng, SU Yi-nao, SUN You-hong, GAO Ke. High matrix bionic abnormal shape impregnated diamond bit [J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[7] LIANG Yun-hong, REN Lu-quan. Preliminary study of habitat and its bionics [J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[8] LIANG Yun-hong, REN Lu-quan. Preliminary study of bionics in human life [J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[9] ZHANG Qin-guo, QIN Si-cheng, Yang Li-guang, MA Run-da, LIU Yu-fei, LI Wu. Thermal environment prediction of loader engine cabin in a virtual wind tunnel [J]. 吉林大学学报(工学版), 2016, 46(1): 50-56.
[10] QIAN Zhi-hui, MIAO Huai-bin, REN Lei, REN Lu-quan. Lower limb joint angles of German shepherd dog during foot-ground contact in different gait patterns [J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[11] ZOU Meng, YU Yong-jun, ZHANG Rong-rong, WEI Can-gang, WANG Hui-xia. Simulation analysis of energy-absorption properties of thin-wall tube based on horn structure [J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
[12] YANG Zhuo-juan, WANG Qing-cheng, GAO Ying, MEN Yu-zhuo, YANG Xiao-dong. Effect of different solutions on the wettability of lotus leaves [J]. 吉林大学学报(工学版), 2015, 45(6): 1869-1873.
[13] TIAN Wei-jun, WANG Ji-yue1, LI Ming1, CHEN Si-yuan, LIU Fang-yuan, CONG Qian. Bionic design of the small blade of horizontal axis wind turbines [J]. 吉林大学学报(工学版), 2015, 45(5): 1495-1501.
[14] TIAN Gui-zhong, LIU Zhi-ling, ZHOU Hong-gen, SONG Jiang-chao, ZHU Tao. Quasi-static axial tensile mechanical characteristics of silkworm's anterior silk gland [J]. 吉林大学学报(工学版), 2015, 45(3): 872-877.
[15] WEI Gan, YANG Zhi-gang, LI Qi-liang. Aerodynamic optimization method for car body based on process costing genetic algorithm [J]. 吉林大学学报(工学版), 2014, 44(6): 1578-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!