吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 415-420.doi: 10.13229/j.cnki.jdxbgxb201402022

• paper • Previous Articles     Next Articles

P-doped TiO2 immobilized diatomite and its photocatalytic performance under visible light

XIA Yue1,2, LI Fang-fei1,2, JIANG Yin-shan1,2, LI Xue-jiao3   

  1. 1. College of Material Science and Engineering, Jilin University, Changchun 130022, China;
    2. Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130022, China;
    3. Anshan Economic Development Zone Administrative Committee, Anshan 114013, China
  • Received:2013-04-20 Online:2014-02-01 Published:2014-02-01

Abstract:

P-doped nanosized TiO2 powders (P-TiO2) were synthesized by a sol-gel method with tetrabutyl titanate and phosphoric acid as Ti and phosphorus resources, and then immobilized on diatomite (P-TiO2-Dt). P-doped TiO2 powders and P-TiO2-diatomite were characterized by XRD, FTIR, SEM and UV-Vis. The photocatalytic activities of P-TiO2 and P-TiO2-Dt were investigated by the degradation of methyl orange and methylene blue under visible light. The results show that phosphorus is incorporated into the TiO2 lattice. The transformation temperature from anatase-to-rutile phase and the crystal growth of TiO2 are remarkably improved. The morphology of diatomite is not destroyed by supported P-TiO2. According to the diffuse reflectance UV-Vis spectra, P doping and supported by diatomite both lead to absorption edge of TiO2 and shift to the visible-light region. This implies that P-TiO2 and P-TiO2-Dt have photocatalytic activities under visible-light irradiation. As a result, the P-TiO2-Dt photocatalyst exhibits higher visible-light catalytic effect than unloaded P-TiO2, which is due to the interactions between diatomite support and P-TiO2. The photocatalytic experiments prove that the sample with P-TiO2-Dt content of 20% exhibits the best photocatalytic activity.

Key words: materials synthesis and processing technology, visible-light photocatalytic activity, diatomite, loading

CLC Number: 

  • TQ034

[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.

[2] Wang D S, Wang Y H, Li X Y, et al. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by 'in situ' method[J]. Catalysis Communications, 2008, 9(6): 1162-1166.

[3] Yang K S, Dai Y, Huang B B. Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles[J]. The Journal of Physical Chemistry C, 2007, 111(51): 18985-18994.

[4] Li F F, Jiang Y S, Xia M S, et al. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2[J]. The Journal of Physical Chemistry C, 2009, 113(42): 18134-18141.

[5] Yu J C, Zhang L Z, Zheng J C, et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials, 2003, 15(11): 2280-2286.

[6] Shi Q, Yang D, Jiang Z Y, et al. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles[J]. Journal of Molecular Catalysis B-Enzymatic, 2006, 43(1-4): 44-48.

[7] Xu Y M, Zheng W, Liu W P. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 122(1): 57-60.

[8] Kyotani T, Ma Z X, Tomita A. Template synthesis of novel porous carbons using various types of zeolites[J]. Carbon, 2003, 41(7): 1451-1459.

[9] Bakandritsos A, Steriotis T, Petirdis D. High surface area montmorillonite-carbon composites and derived carbons[J]. Chemistry of Materials, 2004, 16(8): 1551-1559.

[10] Nozawa M, Tanigawa K, Hosomi M, et al. Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon[J]. Water Science and Technology, 2001, 44(9): 127-133.

[11] Jia Y X, Han W, Xiong G X, et al. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials[J]. Journal of Colloid and Interface Science, 2008, 323(2): 326-331.

[12] Lin L, Lin W, Xie J L, et al. Photocatalytic properties of phosphor-doped titania nanoparticles[J]. Applied Catalysis B-Environmental, 2007, 75(1/2): 52-58.

[13] Lv Y Y, Yu L S, Huang H Y, et al. Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation[J]. Journal of Alloys and Compounds, 2009, 488(1): 314-319.

[14] Yu H F. Photocatalytic abilities of gel-derived P-doped TiO2[J]. Journal of Physics and Chemistry of Solids, 2007, 68(4): 600-607.

[15] Zheng R Y, Guo Y, Jin C, et al. Novel thermally stable phosphorus-doped TiO2 photocatalyst synthesized by hydrolysis of TiCl4[J]. Journal of Molecular Catalysis A: Chemical, 2010, 319(1/2): 46-51.

[16] Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. The Journal of Physical Chemistry B, 2003, 107(50): 13871-13879.

[17] Warren D S, McQuillan A J. Influence of adsorbed water on phonon and UV-induced IR absorptions of TiO2 photocatalytic particle films[J]. The Journal of Physical Chemistry B, 2004, 108(50): 19373-19379.

[18] Samantaray S K, Parida K M. Effect of anions on the textural and catalytic activity of titania[J]. Journal of Materials Science, 2003, 38(9): 1835-1848.

[19] Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chemical Reviews, 1993, 93(1): 341-357.

[1] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[2] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[3] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] CHEN Jun-fu, GUAN Zhi-ping, YANG Chang-hai, NIU Xiao-ling, JIANG Zhen-tao, Song Yu-quan. Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests [J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[5] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[7] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[8] BAI De-en, QUAN Qi-quan, LI He, CHEN Ya-wen, DENG Zong-quan. Starting torque test system for harmonic drive based on servo laoding [J]. 吉林大学学报(工学版), 2017, 47(6): 1804-1810.
[9] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[10] XING Hai-yan, GE Hua, LI Si-qi, YANG Wen-guang, SUN Xiao-jun. Hidden defect metal magnetic memory identification for welded joints based on fuzzy membership and maximum likelihood estimation [J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[11] GU Xiao-yan, LIU Ya-jun, SUN Da-qian, XU Feng, MENG Ling-shan, GAO Shuai. Microstructures and mechanical properties of transient liquid phase diffusion bonded S355 steel/6005A aluminum alloy joint [J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[12] GU Zheng-wei, ZHANG Wen-xue, LYU Meng-meng, WANG Wei, XU Hong, LI Xin. Stretch bending defect control of U-section stainless steel profile with wide flange [J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[13] GU Zheng-wei, LYU Meng-meng, ZHANG Wen-xue, LEI Jiao-jiao, XU Hong. Stamping of front-end three-dimensional skin of China electric multiple units [J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[14] YANG Xin-hui, XUE Wei, GUO Nan. Bending performance of glued-lumber beam reinforced with steel plate [J]. 吉林大学学报(工学版), 2017, 47(2): 468-477.
[15] LIANG Ji-cai, LI Yi, GAO Song, TENG Fei. Springback prediction for multi-point 3D stretch bending profile [J]. 吉林大学学报(工学版), 2017, 47(1): 185-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!