吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 776-781.doi: 10.13229/j.cnki.jdxbgxb201403031

• Orignal Article • Previous Articles     Next Articles

Dynamic power management stochastic policy for non-stationary multi-task

MA Xi-qiang1,2,LIU Wei-ya1,ZHENG Xi-feng1,CHENG Peng1,2   

  1. 1.Changchun Institute of Optic,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;
    2.University of Chinese Academy of Sciences,Beijing 100039,China
  • Received:2012-12-21 Online:2014-03-01 Published:2014-03-01

Abstract: A dynamic power management stochastic policy for non-stationary multi-task is proposed. First, device-requester utilization lookup table was constructed based on system message, and distribution was updated according to the actual time interval. Then, a Semi-Markov stochastic model was built, and the cost function and objective function were defined. The discount criteria optimization method based on linear programming strategy was given. The moment of decision and conversion state was pointed out. Experimental results show that, while considering the conditions of the performance constraints, the algorithm has good stability; delay rate is less than 0.10; competitive rate can reach 0.57. The algorithm reduces power consumption more efficiently than other policies, and is beneficial to the application in embedded systems.

Key words: computer application, dynamic power management, Markov decision processes, policy optimization, embedded system

CLC Number: 

  • TP301
[1] Soteriou V, Peh L S. Dynamic power management for power optimization of interconnection networks using on/off links[C]∥11th Symposium on High Performance Interconnects, Stanford,C A,USA,2003: 15-20.
[2] Kachroo P, Shukla S K, Erbes T, et al. Stochastic learning feedback hybrid automata for power management in embedded systems[C]∥Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, Binghamton, N Y,USA,2003:121-125.
[3] Weng L C,Wang X J,Liu B.A survey of dynamic power optimization techniques[C]∥3rd IEEE International Workshop on System-on-Chip for Real-Time Applications,Calgary, Alberta,Canada,2003:48-52.
[4] Benini L, De Micheli G. System-level power optimization: techniques and tools[J]. ACM Transactions on Design Automation of Electronic Systems, 2000, 5(2): 115-192.
[5] Lu Y H, De Micheli G. Comparing system-level power management policies[J]. IEEE Design & Test of Computers, 2001, 18(2):10-19.
[6] Krishnan P,Long P M,Vitter J S.Adaptive disk spin-down via optimal rent-to-buy in probabilistic environments[J].Algorithmica,1999,23(1):31-56.
[7] 王毅,张德运,马新新,等. 无线传感器网络传感器节点动态功耗管理方法[J]. 吉林大学学报:工学版, 2008,38(4):880-885.
Wang Yi, Zhang De-yun, Ma Xin-xin, et al. Novel dynamic power management of sensor node in wireless sensor networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(4): 880-885.
[8] Helmbold D P, Long D D E, Sconyers T L, et al. Adaptive disk spin-down for mobile computers[J]. Mobile Networks & Applications, 2000, 5(4): 285-297.
[9] Srivastava M B, Chandrakasan A P, Brodersen R W. Predictive system shutdown and other architectural techniques for energy efficient programmable computation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1996, 4(1): 42-55.
[10] Ren Z Y, Krogh B H, Marculescu R. Hierarchical adaptive dynamic power management[J]. IEEE Transactions on Computers, 2005, 54(4): 409-420.
[11] 江琦,奚宏生,殷保群. 动态电源管理的随机切换模型与策略优化[J]. 计算机辅助设计与图形学学报, 2006, 18(5): 680-686.
Jiang Qi, Xi Hong-sheng, Yin Bao-qun. Stochastic switching model and policy optimization for dynamic power management[J]. Journal of Computer-aided Design & Computer Graphics, 2006, 18(5): 680-686.
[12] Benini L, Bogliolo A, Paleologo G A, et al. Policy optimization for dynamic power management[J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 1999, 18(6):813-833.
[13] Simunic T, Benini L, Glynn P, et al. Event-driven power management[J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2001, 20(7): 840-857.
[14] 吴琦, 熊光泽. 非平稳自相似业务下自适应动态功耗管理[J]. 软件学报, 2005, 16(8): 1499-1505.
Wu Qi, Xiong Guang-ze. Adaptive dynamic power management for non-stationary self similar requests[J]. Journal of Software, 2005, 16(8): 1499-1505.
[15] 戚隆宁,张哲,黄少珉. 多任务下I/O设备的动态功耗管理[J]. 中国工程科学, 2008, 10(2): 60-65.
Qi Long-ning, Zhang Zhe, Huang Shao-min. Dynamic power management for I/O devices under multi-task environment[J]. Engineering Science, 2008, 10(2): 60-65.
[16] Hwang C H, Wu A C H. A predictive system shutdown method for energy saving of event-driven computation[J]. ACM Transactions on Design Automation of Electronic Systems, 2000, 5(2): 226-241.
[17] 唐昊, 吴玉华, 周雷. 半Markov决策过程的数值迭代优化[J]. 吉林大学学报:工学版, 2006, 36(1):108-112.
Tang Hao, Wu Yu-hua, Zhou Lei. Value iteration optimization for Semi-Markov decision processes[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(1): 108-112.
[18] 胡奇英, 刘建庸. 马尔可夫决策过程引论[M]. 西安:西安电子科技大学出版社, 2002.
[19] Lee W K, Lee S W, Siew W O. Hybrid model for dynamic power management[J]. IEEE Transactions on Consumer Electronics, 2009, 55(2): 656-664.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] CHEN Si-guo, JIANG Xu, WANG Jian, LIU Yan-heng, DENG Wei-wen, DENG Jun-yi. Mashup of vehicular ad-hoc network and universal mobile telecommunications system[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] MENG Chao, SUN Zhi-xin, LIU San-min. Multiple execution paths for virus based on cloud computing[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] XIAN Shu, ZHENG Jin, LU Xing, ZHANG Shi-peng. Identification approach of P2P flow based on the content redistribution model[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] LYU Yuan-zhi, WANG Shi-gang, YU Jue-qiong, WANG Xiao-yu, LI Xue-song. Display characteristics of one-dimensional integral imaging in virtual mode based on lenticular lens array[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] WANG Dan, LI Yang, NIAN Gui-jun, WANG Ke. An inhomogeneity mask for spatial watermarking[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] FENG Lin-han, QIAN Zhi-hong, SHANG Ke-cheng, ZHU Shuang. Improved hidden node collision avoidance strategy based on IEEE802.15.4[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .