吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 236-244.doi: 10.13229/j.cnki.jdxbgxb201501035

• Orignal Article • Previous Articles     Next Articles

Test-oriented ontology learning methods

WANG Jun-hua1,2,3,ZUO Wan-li1,2,PENG Tao1,2   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education,Changchun 130012,China;
    3.College of Computer Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2013-09-02 Online:2015-02-01 Published:2015-02-01

Abstract: The techniques of statistics, frequent item mining, pattern matching, heuristic learning and active learning are employed to learn the concepts (including instances), taxonomic relations, semantic relations and the concept properties from the documents based on preprocessing tool Gate and general ontology WordNet. The concept property learning was first proposed in this paper. Experiment results show that the proposed ontology learning method can improve the effect of word semantic disambiguation, enrich phrase concept learning and semantic relationship learning, increase the accuracy of automatic ontology construction and reduce the cost of ontology learning.

Key words: artificial intelligence, ontology learning, active learning, pattern matching, frequent item mining, heuristic learning

CLC Number: 

  • TP18
[1] 叶育鑫, 欧阳丹彤, 领吉, 等. 本体与规则整合的推理方法研究及设计[J]. 吉林大学学报:工学版,2009, 39(5): 1297-1302.
Ye Yu-xin, Ouyang Dan-tong, Ling Ji, et al. Research and design of reasoning algorithm with ontologies and rules[J]. Journal of Jilin University (Engineering and Technology Edition),2009, 39(5): 1297-1302.
[2] 白岩, 刘大有, 刘杰. 一种移动Agent通信中本体信息调整方法[J]. 吉林大学学报:工学版,2007, 37(3):587-590.
Bai Yan, Liu Da-you, Liu Jie. Ontology based information alignment method in mobile Agent communication[J]. Journal of Jilin University (Engineering and Technology Edition),2007, 37(3): 587-590.
[3] Philipp Cimiano, Johanna Volker. Text2Onto a framework for ontology learning and data-driven change discovery[C]∥LNCS,2005,3513: 227-238.
[4] Shamsfard M, Barforoush A A. Learning ontologies from natural language texts[J]. Journal of Human-Computer Studies, 2004, 60(1): 17-63.
[5] Navigli R, Velardi P, Gangemi A. Ontology learning and its application to automated terminology translation[J]. IEEE Intelligent Systems, 2003,18(1):22-31.
[6] Avigdor G, Giovanni M, Hasan J. OntoBuilder: fully automatic extraction and consolidation of ontologies from web sources[C]∥Proc of the ICDE, Boston: IEEE Computer Society, 2004: 853-858.
[7] Fortuna Blaz, Grobelnik Marko, Mladenic Dunja. OntoGen: semi-automatic ontology editor[C]∥HCII, 2007: 309-318.
[8] 邢军,韩敏. 基于两层向量空间模型和模糊FCA本体学习方法[J]. 计算机研究与发展, 2009, 46(3): 443-451.
Xing Jun, Han Min. An ontology learning method based on double VSM and fuzzy FCA[J]. Journal of Computer Research and Development, 2009, 46(3): 443-451.
[9] Zouaq Amal,Gasevic Dragan,Hatala Marek. Towards open ontology learning and filtering[J]. Information Systems, 2011, 36(7): 1064-1081.
[10] Ruiz-Martinez J M, Valencia-Garcia R, Fernandez-Breis J T, et al. Ontology learning from biomedical natural language documents using UMLS[J]. Expert Systems with Applications, 2011, 38(10): 12365-12378.
[11] Yang Qing, Cai Kai-min, Sun Jun-li, et al. Design analysis and implementation for ontology learning model[C]∥ICCET, 2010:164-167.
[12] Jiang Xing, Tan Ah-hwee. CRCTOL: a semantic-based domain ontology learning system[C]∥ICCET, 2010:3164-3167.
[13] Navigli R, Velardi P. Structural semantic interconnections: acknowledge-based approach to word sense disambiguation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(7):1075-1086.
[14] Patwardhan S, Banerjee S, Pedersen T. UMND1: unsupervised word sense disambiguation using contextual semantic relatedness[C]∥The 4th International Workshop on Semantic Evaluations, 2007: 390-393.
[15] Pedersen T, Kolhatkar V. WordNet: SenseRelate: AllWords -a broad coverage word sense tagger that maximizes semantic relatedness[C]∥NAACL HLT, 2009: 17-20.
[16] McCarthy Diana, Koeling Rob, Weeds Julie, et al. Unsupervised acquisition of predominant word senses[J]. Computational Linguistics, 2007, 33(4): 553-590.
[17] Eneko Agirre, Oier Lopez de Lacalle, Aitor Soroa. Knowledge-based WSD on specific domains: performing better than generic supervised WSD[C]∥The Twenty-First International Joint Conference on Artificial Intelligence, 2009: 1501-1506.
[18] Lu Zhi-mao, Liu Ting, Zhang Gang, et al. Word sense disambiguation based on dependency relationship analysis and Bayes model[J]. High Technology Letters, 2003, 13(5): 1-7.
[19] Chen P, Ding W, Bowes C, et al. A fully unsupervised word sense disambiguation method using dependency knowledge human language technologies[C]∥The Annual Conference of the North American Chapter of the ACL, 2009: 28-36.
[20] Lu Wen-peng, Huang He-yan, Zhu Chao-yong. Feature words selection for knowledge-based word sense disambiguation with syntactic parsing[J]. Przeglad Elektrotechniczny, 2012, 88: 82-87.
[21] Huang He-yan, Lu Wen-peng. Knowledge-based word sense disambiguation with feature words based on dependency relation and syntax tree[J]. IJACT, 2011, 3(8): 73-81.
[22] Leacock Claudia, Chodorow Martin. Combining local context and WordNet similarity for word sense identification[C]∥Fellbaum, 1998:265-283.
[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] MA Miao, LI Yi-bin. Multi-level image sequences and convolutional neural networks based human action recognition method [J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!