吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 159-165.doi: 10.13229/j.cnki.jdxbgxb201601024

Previous Articles     Next Articles

Fatigue analysis method of working devices of hydraulic excavator

QIU Qing-ying1, WEI Zhen-kai1, GAO Yu1, FENG Pei-en1, YIN Peng-long2   

  1. 1.State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
    2.SINOMACH-HI(Changzhou) Excavator Co, Ltd, Changzhou 213136, China
  • Received:2014-04-16 Online:2016-01-30 Published:2016-01-30

Abstract: It is hard to measure the load history of the working device of hydraulic excavator in fatigue analysis. To solve this problem a novel fatigue analysis method is proposed. First, the complete change process of digging resistance, named Digging Resistance Load Spectrum (DRLS), is obtained by simulating the digging process of soil with the bucket of hydraulic excavator. Second, according to the DRLS, the load history of each hinge of the working device is calculated by the operation simulation of a full typical working cycle of the excavator. The simulation results are then verified by comparing with the actual cylinder pressure measured from the experiment similar to the working condition in the simulation. Finally, the fatigue analysis of the boom and arm of the working device are accomplished with the verified load histories of the hinges. The effectiveness of the proposed method is demonstrated with the fatigue analysis process of the working device of a 23 t hydraulic backhoe excavator. The results come out that the minimum lives of the boom and arm are 105.978 and 106.47 cycles respectively.

Key words: mine mechanical engineering, fatigue analysis, arbitrary Lagrangian-Eulerian(ALE), hydraulic excavator, working device

CLC Number: 

  • TD42
[1] 张卫国,权龙,程珩,等. 真实载荷驱动下挖掘机工作装置疲劳寿命研究[J]. 农业机械学报, 2011, 42(5):35-38.
Zhang Wei-guo, Quan Long, Cheng Hang, et al. Fatigue analysis on working device of excavator driven by practical load[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 35-38.
[2] 周宏兵,胡雄伟,孙永刚,等. 基于ADAMS仿真技术的挖掘机铰点受力分析[J]. 郑州大学学报:工学版,2009,30(2):71-74.
Zhou Hong-bing, Hu Xiong-wei, Sun Yong-gang, et al. Force analysis of hinges of excavator based on ADAMS simulation technology[J]. Journal of Zhengzhou University(Engineering Science), 2009, 30(2):71-74.
[3] 朱连双. 微型挖掘机工作装置的有限寿命设计研究[D]. 济南:山东大学机械工程学院,2013.
Zhu Lian-shuang. Finite life design research of mini excavator working device[D].Ji'nan: School of Mechanical Engineering,Shandong University, 2013.
[4] 白瑞.液压挖掘机工作装置的有限元分析及疲劳寿命预测[D].太原:太原理工大学机械电子工程研究所,2011.
Bai Rui. Finite element analysis and fatigue life prediction of hydraulic excavator working device[D]. Taiyuan: Institute of Mechatronic Engineering,Taiyuan University of Technology,2011.
[5] LSTC. LS-DYNA keyword user's manual[R]. Livermore Software Technology Corporation, USA, 2013.
[6] 刘英,于立宏. Mohr-Coulomb屈服准则在岩土工程中的应用[J]. 世界地质, 2010, 28(4):633-639.
Liu Ying, Yu Li-hong. Application of Mohr-Coulomb yield criterion in geo-technical engineering[J]. Global Geology, 2010, 28(4):633-639.
[7] Di Y, Sato T. Computational modeling of large deformation of saturated soils using an ALE finite element method[R]. Kyoto University, No. 47C, 2004.
[8] Susila E, Hryciw R D. Large displacement FEM modeling of the cone penetration test (CPT) in normally consolidated sand[J]. International Journal for Numerical and Analytical Methods in Geomechnics, 2003, 27(7): 585-602.
[9] Karmakara S, Ashrafizadeh S R, Kushwaha R L. Experimental validation of computational fluid dynamics modeling for narrow tillage tool draft[J]. Journal of Terra Mechanics, 2009, 46(6): 277-283.
[10] 上海岩土工程勘察设计研究院有限公司. 昆山花桥国际商务城F地块酒店公寓岩土工程勘察报告[R]. 2007.
[11] 丁峻宏,金先龙,郭毅之. 土壤切削大变形的三维数值仿真[J]. 农业机械学报, 2007,36(4): 118-121.
Ding Jun-hong, Jin Xian-long, Guo Yi-zhi. Study on 3-D numerical simulation for soil cutting with large deformation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 36(4):118-121.
[12] 沈建奇,金先龙,王吉云,等. 基于并行计算的盾构机过大堤三维数值模拟[J]. 上海交通大学学报, 2009, 43(6):1017-1020.
Shen Jian-qi,Jin Xian-long, Wang Ji-yun, et al. Three dimensional numerical simulation of shield tunneling through flood levee based on parallel computing[J]. Journal of Shanghai Jiaotong Uniersity, 2009, 43(6): 1017-1020.
[13] 王同建, 陈晋市,赵锋, 等. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报:工学版, 2013, 43(3):607-612.
Wang Tong-jian, Chen Jin-shi, Zhao Feng, et al. Mechanical hydraulic co-simulation and experiment of full hydraulic steering systems[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3):607-612.
[14] 朱正宇,何国求,陈成澍,等. 多轴非比例加载高周疲劳研究进展[J]. 同济大学学报, 2006, 34(9):1221-1225.
Zhu Zheng-yu, He Guo-qiu, Chen Cheng-shu, et al. Recent advances of multiaxial high cycle fatigue under nonproportional loading[J]. Journal of Tongji University, 2006, 34(9):1221-1225.
[1] LI Yin-wu, WU Qing-wen, CHANG Zhi-yong, YANG Cheng. Simulation and optimal design of backhoe hydraulic excavator based on bionic teeth [J]. 吉林大学学报(工学版), 2018, 48(3): 821-827.
[2] LIU Han-guang, WANG Guo-qiang, MENG Dong-ge, ZHAO Huan-yu. Reasonable pre-tension research of crawler traveling gear of hydraulic excavator [J]. 吉林大学学报(工学版), 2018, 48(2): 486-491.
[3] PENG Bei, GAO Yu, FENG Pei-en, QIU Qing-ying. Energy-saving technology in rotary starting process of hydraulic excavator [J]. 吉林大学学报(工学版), 2016, 46(6): 1912-1921.
[4] ZENG Yi-cong,XU Hai-liang,LI Feng,WU Bo. Influence of drum-shape error on combined roller bearing torque of high pressure grinding rolls [J]. 吉林大学学报(工学版), 2015, 45(2): 466-472.
[5] CHEN Ming-dong, ZHAO Ding-xuan, NI Tao. Boom energy-saving system with closed oil circuit in hydraulic excavator [J]. , 2012, 42(05): 1140-1144.
[6] ZHAO Ding-xuan, CHEN Ming-dong, DAI Qun-liang, ZHANG Er-ping, XU Chun-bo. System of arm potential energy recovery in hybrid hydraulic excavators [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 150-154.
[7] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket [J]. 吉林大学学报(工学版), 2006, 36(06): 934-938.
[8] ZHANG Da-qing, HE Qing-hua, HAO Peng, GUO Yong. Trajectory Tracking Control of Hydraulic Excavator Bucket [J]. 吉林大学学报(工学版), 2005, 35(05): 490-0494.
[9] CONG Qian, CHAI Xiongliang, YANG Xiaodong, JIN Jingfu. Coal Adhesion Reduction on Tramcar by Flexible Bionics Technique [J]. 吉林大学学报(工学版), 2005, 35(04): 437-441.
[10] WANG Xin,, ZHAO Dingxuan, SHANG Tao, SHI Xiangzhong, TANG Xinxing. Adaptive PID Control for Energysaving of Hydraulic Excavator Based [J]. 吉林大学学报(工学版), 2005, 35(04): 377-380.
[11] DAI Wenyue, LIANG Hao. Dynamic simulation and comprehensive optimum design of working device of loader [J]. 吉林大学学报(工学版), 2004, (4): 602-605.
[12] SHANG Tao, ZHAO Dingxuan, XIAO Yingkui, GUO Xiang'en, JIN Lisheng, ZHANG Hongyan. Power matching for energy-saving control system of hydraulic excavators [J]. 吉林大学学报(工学版), 2004, (4): 592-596.
[13] GUO Xiang-en, ZHAO Ding-xuan, SHANG Tao, ZHANG Hong-yan. Application of fuzzy theory in electronic control system of hydraulic excavator for energy-saving [J]. 吉林大学学报(工学版), 2004, (2): 217-221.
[14] JIN Li-sheng, ZHAO Ding-xuan, HUANG Hai-dong . Study on Energy-saving Intelligent PID Expert Control System of Hydraulic Excavator [J]. 吉林大学学报(工学版), 2001, (4): 12-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!