吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 498-503.doi: 10.13229/j.cnki.jdxbgxb201702021

Previous Articles     Next Articles

Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump

ZHANG Min, LI Song-jing, CAI Shen   

  1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2016-04-02 Online:2017-03-20 Published:2017-03-20

Abstract: In order to comfort and protect human eyes in an environment with strong lights using color-changing glasses, a microfluidic liquid color-changing glasses is presented. Instead of traditional mechanical machining, soft lithography technology is applied for the fabrication of the color-changing layer made of transparent polymer polydimethylsiloxane (PDMS). Surface modification treatment is used for realizing irreversibly bonding of PDMS color-changing layer with substrate lens (glass/optical resin) to form liquid color-changing lens with closed microfluidic channels. A valveless piezoelectric micro-pump is designed and micromachined, which is used to control the liquid circulation in the channel on the lens to realize color-changing function of the glasses. The color-changing response times of the glasses under different voltage amplitudes and frequencies are tested by experiments. Compared with conventional solid photochromic glasses, the microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump show faster response, higher controllability and better reversibility.

Key words: turn and control of fluid, microfluidic, liquid colour-changing glasses, valveless piezoelectric micro-pump, soft lithography

CLC Number: 

  • TH137
[1] Liberale C, Cristiani I, Cojoc G, et al. Integrated microfluidic device for single-cell trapping and spectroscopy[J]. Sci Rep, 2013, 3(2):1-6.
[2] Lee S H, Oh E H, Park T H. Cell-based microfluidic platform for mimicking human olfactory system[J]. Biosens Bioelectron, 2015, 74(1):554-561.
[3] Majedi F S, Hasani-Sadrabadi M M, Emami S H, et al. Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents[J]. LAB Chip, 2013, 13(2):204-207.
[4] Lee S H, Rhee H W, van Noort D, et al. Microfluidic bead-based sensing platform for monitoring kinase activity[J]. Biosens Bioelectron, 2014, 57(5):1-9.
[5] Crooks J A, Stilwell M D, Oliver P M, et al. Decoding the chemical language of motile bacteria by using high-throughput microfluidic assays[J]. Chembiochem, 2015, 16(15):2151-2155.
[6] Vasdekis A E, Grate J W, Konopka A E, et al. Simple microfluidic integration of 3D optical sensors based on solvent immersion lithography[C]∥Conference on Lasers and Electro-Optics (CLEO). San Jose:IEEE, 2014:1-2.
[7] Lim J L, Hu D J J, Shum P P, et al. Design and analysis of microfluidic optical fiber device for refractive index sensing[J]. IEEE Photonic Tech L, 2014, 26(21):2130-2133.
[8] Awano T. Electronic structure of silver halide doped glasses[J]. Solid State Ionics, 2013, 262(9):743-746.
[9] Giraldo L M, Velásquez D. Obtaining relief structures in silver halide materials[J]. Opt Pura Apl, 2013, 46(4):363-368.
[10] 陈国贵. 变色镜片的性能、鉴别及应用[J]. 中国眼镜科技杂志,2005,9(1):95-96.
Chen Guo-gui. The performance, identification and application of colour lenses[J].China Glasses Science-Technology Magazine, 2005, 9(1):95-96.
[11] Dumas J C, Vidal J, Dumas V. Fast response liquid crystal glasses[J]. Lighting Res Technol, 2012, 44(4):498-505.
[12] 赵天, 杨志刚, 刘建芳, 等. 利用压电微泵驱动和脉动混合可控合成金纳米粒子[J]. 光学精密工程, 2014, 22(4): 904-910.
Zhao Tian, Yang Zhi-gang, Liu Jian-fang,et al. Controlled synthesis of gold nanoparticles based on PZT micropump and pulsating mixing[J]. Optics and Precision Engineering, 2014, 22(4): 904-910.
[13] 李以贵, 黄远, 颜平, 等. 利用体块PZT制备膜片式压电微泵[J]. 光学精密工程, 2016, 24(5): 1072-1079.
Li Yi-gui, Huang Yuan, Yan Ping, et al. Fabrication of micro diaphragm piezoelectric pump by using bulk PZT[J]. Optics and Precision Engineering, 2016, 24(5): 1072-1079.
[14] Ren H W, Wu S T. Variable-focus liquid lens by changing aperture[J]. Appl Phys Lett, 2005, 86(21):211107.
[15] Santiago-Alvarado A, González-García J, Itubide- Jiménez F,et al. Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM)[J]. Optik, 2013, 124(11):1003-1010.
[16] McDonald J C, Whitesides G M. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices[J]. Accounts Chem Res, 2002, 35(7):491-499.
[17] Maki A J, Peltokangas M, Kreutzer J, et al. Modeling carbon dioxide transport in PDMS-based microfluidic cell culture devices[J]. Chem Eng Sci, 2015, 137(1):515-524.
[18] Becker H, Gaertner C. Polymer microfabrication technologies for microfluidic systems[J]. Anal Bioanal Chem, 2008, 390(1):89-111.
[19] 崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社,2005:187-221.
[20] Li S S, Liu X Q, Chau A, et al. A simple magnetic force-based cell patterning method using soft lithography[J]. Sci China Life Sci, 2015, 58(4):400-402.
[21] Zhou J, Ellis A V, Voelcker N H. Recent developments in PDMS surface modification for microfluidic devices[J]. Electrophoresis, 2010, 31(1):2-16.
[22] Hemmil S, Cauich-Rodríguezc J V, Kreutzer J, et al. Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces[J]. Appl Surf Sci, 2012, 258(24):9864-9875.
[23] 蒋丹,李松晶,杨平. 收缩管/扩张管型无阀压电微泵的动态特性研究[J]. 工程力学,2011, 28(3):218-223.
Jiang Dan, Li Song-jing, Yang Ping. Study on dynamic characteristics of a piezoelectric valve-less nozzle/diffuser micro pump[J]. Engineering Mechanics, 2011, 28(3):218-223.
[24] Yang S, He X H, Yuan S Q, et al. A valveless piezoelectric micropump with a Coanda jet element[J]. Sensor Actuat A-Phys, 2015, 230(1):74-82.
[1] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[2] LIU Guo-jun, ZHANG Yan-yan, YANG Xu-hao, LI Xin-bo, LIU Jian-fang, YANG Zhi-gang. Application of surface acoustic wave in controlled synthesis of gold nanoparticles [J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[3] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[4] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[5] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[6] YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi. Development and prospect of digital hydraulic valve and valve control system [J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
[7] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[8] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[9] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[10] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[11] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
[12] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, LIU Yu-fei, XI Yuan. Match and simulation analysis of hydraulic system radiator of wheel loader [J]. 吉林大学学报(工学版), 2015, 45(4): 1124-1129.
[13] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin, LYU Jian-sen. Principle and experiment validation of roller tip-vanetype double-stator multi-speed motor [J]. 吉林大学学报(工学版), 2015, 45(4): 1130-1138.
[14] JIANG Wan-lu,LU Chuan-qi,ZHU Yong. HHT and fuzzy C-means clustering-based fault recognition for axial piston pump [J]. 吉林大学学报(工学版), 2015, 45(2): 429-436.
[15] DONG Han, LIU Xin-hui, WANG Xin, ZHENG Bo-yuan, LIANG Wei-quan, WANG Jia-yi. Parallel hydraulic hybrid braking regenerative characteristics [J]. 吉林大学学报(工学版), 2014, 44(6): 1655-1663.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!