吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1548-1553.doi: 10.13229/j.cnki.jdxbgxb201705029

Previous Articles     Next Articles

Effect of elastic modulus of coating on ice-adhesion strength on substrate

JIN Jing-fu1, LI Yang1, CHEN Ting-kun1, CONG Qian1, 2, 3, QI Ying-chun1   

  1. 1.College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
    2.Key Laboratory of Bionic Engineering,Ministry of Education, Jilin University, Changchun 130022, China;
    3.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2016-07-08 Online:2017-09-20 Published:2017-09-20

Abstract: In this paper, aluminum and Polymethylmethacrylate (PMMA) were used as experimental substrates, BOPP and RTV-1 WH-705 were used as two kinds of different elastic coatings, and the ice-adhesion strength on the coated substrate was measured with an Al-cup for ice making. The tangential ice-adhesion strength testing equipment was used to measure the ice-adhesion strength on uncoated and coated aluminum and PMMA substrates with the elastomeric coatings. Results show that elastic modulus of the coating has significant effect on the ice-adhesion strength on the substrates. Compared with uncoated substrates, the ice-adhesion strength on substrates coated with BOPP and RTV-1 WH-705 is decreased obviously. the ice-adhesion strength on aluminum substrate coated with elastic RTV-1 WH-705 is deduced by 73.27%, and that on PMMA substrate coated with elastic RTV-1 WH-705 is deduced by 14.85%. It is shown that the elastic coefficient and distribution of the coating have significant effects on the ice-adhesion strength. Thus rational choosing coatings and coating distribution on substrate can effectively improve the anti-icing an de-icing properties of the substrates.

Key words: surface and interface in the materials, anti-icing, surface-modification, elastic coating, ice-adhesion strength

CLC Number: 

  • TQ630
[1] Rothrick A M, Selden R. Adhesion of ice in its relation to the de-icing of airplanes[J]. National Advisory Commitee for Aeronautics,1939,3(723):1-12.
[2] 许允,解方喜,刘忠长,等. 一种防止汽车轮拱与挡泥板积雪结冰装置[P].中国:203391716,2014-01-15.
[3] 周莉,徐浩军,龚胜科,等. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报, 2010,20 (6): 105-110.
Zhou Li, Xu Hao-jun, Gong Sheng-ke, et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal, 2010, 20(6): 105-110.
[4] Li Jian, Zhao Yu-shun, Hu Jian-lin, et al. Anti-icing performance of a superhydrophobic PDMS/modified nano-silica hybrid coating for insulators[J]. Journal of Adhesion Science and Technology, 2012, 26(4/5): 665-679.
[5] Kulinich S A, Farzaneh M. Ice adhesion on super-hydrophobic surfaces[J]. Applied Surface Science, 2009, 255(18): 8153-8157.
[6] Momen G, Farzaneh M. Superhydrophobic RTV silicone rubber coatings on anodized aluminium surfaces[J]. Materials Science Forum, 2012, 1531(706): 2546-2551.
[7] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层:从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
Li Hui, Zhao Yun-hui, Yuan Xiao-yan. Anti-icing coatings: from surface chemistry to functional surfaces[J]. Progress in Chemistry, 2012, 24(11): 2087-2096.
[8] 任露泉, 丛茜, 佟金. 界面粘附中非光滑表面基本特性的研究[J]. 农业工程学报, 1992, 8(1): 16-22.
Ren Lu-quan, Cong Qian, Tong Jin. Basic behaviour of nonsmooth surfaces in the interface adhesion[J]. Transactions of the Chinese Society of Agricultural Engineering, 1992, 8(1): 16-22.
[9] 雷冰, 胡毅钧, 胡胜楠,等. 聚氨酯类弹性体涂层性能研究进展及应用[J]. 上海涂料, 2015, 53(9): 27-31.
Lei Bing, Hu Yi-jun, Hu Sheng-nan, et al. The properties research progress and application of polyurethane elastomer coating[J]. Shanghai Coatings, 2015, 53(9): 27-31.
[10] 管东波, 蔡中义, 张继堂,等. 弹性加成型硅胶涂层的制备及防冻粘性能研究[J]. 功能材料, 2016,47(8): 8008-8012.
Guan Dong-bo, Cai Zhong-yi, Zhang Ji-tang, et al. Preparation and anti-icing properties of flexible addition-cured silicone rubber coating[J]. Journal of Functional Materials, 2016,47(8): 8008-8012.
[11] Andre E H, Majid H A, Lockington N A. Adhesion of ice to a flexible substrate[J]. Journal of Materials Science, 1983 (1): 73-81.
[12] Petrenko V F, Whitworth R W. Physics of Ice[M]. New York:Oxford University Press, 2002.
[13] Zou M, Beckford S, Wei R, et al. Effects of surface roughness and energy on ice adhesion strength[J]. Applied Surface Science, 2011, 257(8):3786-3792.
[14] Huang Yan-fen, Hu Ming-jie, Yi Sheng-ping, et al. Preparation and characterization of silica/fluorinated acrylate copolymers hybrid films and the investigation of their icephobicity[J]. Thin Solid Films, 2012, 520(17): 5644-5651.
[15] Lasse Makkonen. Ice adhesion—theory, measurements and countermeasures[J]. Journal of Adhesion Science and Technology, 2012, 26(1/2): 413-445.
[16] Antonini C, Innocenti M, Horn T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1/2): 58-67.
[17] Jellinek H H G, Kachi H, Kittaka S. et al. Ice releasing block-copolymer coatings[J]. Colloid & Polymer Sci, 1978, 256: 544-551.
[18] 吴新锋, 王瑛, 江平开,等. PMMA/(BaTiO_3@PMMA核壳结构纳米颗粒)高导热有机高分子体系[J]. 有机化学, 2014 (11): 2309-2316.
Wu Xin-feng, Wang Ying, Jiang Ping-kai, et al. Highly thermal conductive organic polymer system of PMMA/(core-shell structured BaTiO_3@PMMA Nanoparticles)[J]. Chinese Journal of Organic Chemistry, 2014 (11): 2309-2316.
[19] 吴娟,王洪敏. 高导热室温硫化硅橡胶的制备[J]. 上海化工, 2016, 41(2): 1-3.
Wu Juan, Wang Hong-min. Preparation of room temperature vulcanized silicone rubber with high thermal conductivity[J]. Shanghai Chemical Industry, 2016, 41(2): 1-3.
[20] Young T. An essay on the cohesion of fluids[J].Philosophical Transactions of Royal Society of London,1805, 95: 65-87.
[21] 徐志钮, 律方成, 张翰韬,等. 影响硅橡胶静态接触角测量结果的相关因素分析[J]. 高电压技术, 2012, 38(1): 147-156.
Xu Zhi-niu, Lu Fang-cheng, Zhang Han-tao, et al. Influencing factors of silicone rubber static contact angle measurement[J]. High Voltage Engineering, 2012, 38(1): 147-156.
[22] 隋圆, 赵京波, 杜小瑾. BOPP膜表面接枝聚己内酯的研究[J].北京化工大学学报:自然科学版, 2007, 34(1): 30-34.
Sui Yuan, Zhao Jing-bo, Du Xiao-jin, et al. Study of the ring-opening polymerization of ε-caprolactone on the surface of biaxially oriented polypropylene film[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2007, 34(1): 30-34.
[23] 江晨晖, 胡丹霞, 杨杨. 室温硫化硅橡胶弹性模量和热膨胀系数的测定方法[J]. 合成橡胶工业, 2013, 36(5): 355-358.
Jiang Chen-hui, Hu Dan-xia, Yang Yang. Method for measuring elastic modulus and thermal expansion coefficient of room temperature vulcanized silicone rubber[J]. China Synthetic Rubber Industry, 2013, 36(5): 355-358.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .