Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1134-1143.doi: DOI:10.13229/j.cnki.jdxbgxb20180428

Previous Articles    

Shear strengthening of reinforced concrete beam with prestressed steel wire ropes

Tian⁃lai YU1(),Hai⁃sheng LI1,Wei HUANG2,Si⁃jia WANG1   

  1. 1. College of Civil Engineering, Northeast Forestry University, Harbin 150040, China
    2. Engineering College, Harbin University, Harbin 150086, China
  • Received:2018-05-03 Online:2019-07-01 Published:2019-07-16

Abstract:

Twenty?four reinforced concrete beams were tested to shear failure. The mechanism of shear strengthening was investigated. The influence of the beam design parameters, Loading level of original beam, damage degree of original beam and arrangement of wire rope,on shear strength was investigated. The results show that ropes can effectively delay shear crack development, limit diagonal crack growth, and increase the ultimate shear capacity. The action mechanism of steel wire rope to increase shear capacity is similar to that of web reinforcement in reinforced concrete beams. The design parameters of the original beam have obvious influence on the effect of shear reinforcement; with the increase of loading level, the degree of improvement of shear ultimate bearing capacity gradually decreases; the damage degree of the original beam has some influence on the effect of shear reinforcement. When the crack of the original beam is less than 0.2 mm, the effect of glue injection is not ideal and the increase is small. When the width is more than 0.2 mm, the effect of glue injection is improved and the bearing capacity is improved. However, when the crack width is greater than 0.5 mm, the reinforcement effect is in a stable stage; the U?shaped beam is better than the oblique beam; and the U?shaped beam is better than the U?shaped closed beam.

Key words: road engineering, steel wire ropes, shear strengthening, externally prestressed, reinforced concrete beam

CLC Number: 

  • U446.1

Table 1

Test beam summary table"

编 号剪跨比原梁配筋率/%RC强度等级原梁配箍率/%

原梁损

伤程度

预应力布筋间距/mm

预加力

/MPa

目 的
D11.32.0C300.3570%?卸载--基准梁
B21.31.0C300.3570%?卸载250822原梁配筋率的影响
B31.31.5C300.3570%?卸载250822原梁配筋率的影响
B41.32.0C300.3570%?卸载250822原梁配筋率、混凝土标号的影响
B51.32.7C300.3570%?卸载250822原梁配筋率的影响
B61.32.0C250.3570%?卸载250822混凝土标号的影响
B71.32.0C400.3570%?卸载250822混凝土标号的影响
D222.0C300.3570%?卸载--基准梁
B1022.0C300.3570%?卸载250822原梁配箍率、原梁损伤程度、布筋间距的影响
B1122.0C300.2070%?卸载250822原梁配箍率的影响
B1222.0C300.5070%?卸载250822原梁配箍率影响
B1322.0C300.3550%?卸载250822原梁损伤程度的影响
B1422.0C300.3580%?卸载250822原梁损伤程度的影响
B1522.0C300.3560%?卸载250822原梁损伤程度的影响
B1622.0C300.3570%?卸载150822预应力布筋间距的影响
B1722.0C300.3570%?卸载200822预应力布筋间距影响
B1822.0C300.3570%?卸载300822预应力布筋间距影响
B1922.0C300.3560%?不卸载250822带载水平的影响
B2022.0C300.3550%?不卸载250822带载水平的影响
B2122.0C300.3570%?不卸载250822带载水平的影响
BJ22.0C300.3570%?卸载250822钢丝绳布置方式的影响
TD22.0C300.3570%?卸载-822基准梁
T222.0C300.3570%?卸载250822钢丝绳布置方式的影响,U型封闭式锚固
T322.0C300.3570%?卸载250822钢丝绳布置方式的影响,U型腹板锚固式

Fig.1

Loading and deflection measuring point arrangement"

Fig.2

Layout of strain measuring points of steel wire rope outside rectangular beams and T beams"

Fig.3

Layout of steel strain measuring points in rectangular beams"

Fig.4

Layout of strain measuring points of steel bars in T-shaped beams"

Fig.5

Damage characteristics of datum beam"

Fig.6

Failure characteristics of reinforced beams"

Fig.7

Curves of strain-load relations of stirrups(B6、B4、B7) and wire ropes(B6、B4、B7) between benchmark beams and reinforced beams"

Table 2

Test results of different concrete strength grades"

梁号加固前开裂荷载/kN加固后开裂荷载/kN提高值/%屈服荷载/kN加固前极限荷载/kN加固后极限荷载/kN提高值/%
D1165--300370--
B414521044.82400-49032.43
B612018050380-45021.62
B714518024.14420-52040.54

Fig.8

Curves of strain-load relations of stirrups(D1、B2、B3、B4、B5)and wire ropes(B2、B3、B4) between benchmark beams and reinforced beams"

Table 3

Test results of different longitudinal reinforcement ratio"

梁号加固前开裂荷载/kN加固后开裂荷载/kN提高值/%屈服荷载/kN加固后极限荷载/kN提高值/%
D1165--300370-
B214520037.9332042013.51
B314518024.1440045021.62
B414521044.8242049032.43
B516521027.2748055048.64

Table 4

Test results of reinforcement ratio of different stirrups"

梁号加固前开裂荷载/kN加固后开裂荷载/kN提高值/%屈服荷载/kN加固后极限荷载/kN提高值/%
D2165--270350-
B1013017030.7736045028.57
B1113018038.4634040014.28
B121201805038044025.71

Fig.9

Curves of strain?load relations of stirrups(D2、B11、B12) and wire ropes(B11、B10、B12)between benchmark beams and reinforced beams"

Fig.10

Curves of strain-load relations of stirrups(D2、B20、B19、B21)and wire ropes(B20、B19、B21)between benchmark beams and reinforced beams"

Table 5

Test results of different loading levels"

梁号加固荷载/kN加固前开裂荷载/kN加固后开裂荷载/kN屈服荷载/kN极限荷载/kN极限荷载提高值/%
D2-145-270350-
B2018512023036040014.28
B192201103003303808.57
B212601203003003602.85

Table 6

Correspondence between typical crack width and load"

梁号P0.1/mmP0.5/mmP1.0/mmP1.2/mmP1.5/mm
D2165270290310350
B20240360380390400
B19300330360370380
B21300320330350360

Fig.11

Curves of strain-load relations of stirrups(B15、B10、B14、D2) and wire ropes(B15、B10、B14) between benchmark beams and reinforced beams"

Table 7

Corresponding relationship between typical crack width and load at different damage degrees"

梁号PO.2/mmP0.3/mmPO.5/mmP0.7/mmP1.0/mmP1.2/mmP1.5/mm
D2185210270290310330350
B13180240310360390400400
B15180250330360400410420
B10190270330370410430450
B14210330360400420430450

Table 8

Test results at different damage degrees"

损伤度/%梁号加固前开裂荷载/kN加固后开裂荷载/kN提高值/%屈服荷载/kN加固后极限荷载/kN提高值/%
D2145--270350-
50B131201805033040014.29
60B1513017534.636042020.00
70B1013017030.739045028.57
80B1413017030.739045028.57

Table 9

Test results under different bundles"

编号原始试验梁抗剪承载力/kN加固后的试验梁抗剪承载力/kN
实测开裂荷载/kN实测极限荷载/kN实测开裂荷载/kN开裂荷载提高值/%实测极限荷载/kN极限荷载提高值/%
D2130370----
B10130-17030.7747027.03
BJ145-17017.2441010.81
TD60210----
T260-905026023.81
T360-12010025019.05

Fig.12

U-shaped hoop arrangement scheme for rectangular beams"

Fig.13

Arrangement of 45o beams for rectangular beams"

Fig.14

Closed anchorage arrangement scheme of T?beam U?hoop"

Fig.15

Anchorage arrangement scheme of T?beam U?hoop Web"

Fig.16

Relation of strain and load of rectangular beam wire rope under different section tension schemes"

Fig.17

Relationof strain and load of T?Beam steel wire rope under different section tension schemes"

Fig.18

Relation of strain and load for different bundle spacing schemes"

Table 10

Test results under different bundle spacing"

梁号加固前开裂荷载/kN加固后开裂荷载/kN提高值/%屈服荷载/kN加固后极限荷载/kN提高值/%
D2130--270350-
B1013017030.7636045028.57
B1613016023.0839046031.43
B171201805036044025.71
B1812019058.3333040014.29
1 赵晋,张雪丽.CFRP板条加固钢筋混凝土梁的抗剪性能试验研究[J].混凝土,2007(11):8-11.
ZhaoJin,ZhangXue-li.Experimental study of shear characteristic of reinforced concrete beams strengthened with CFRP laminates[J] Concrete, 2007(11):8-11.
2 KhalifaA, NanniA . Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites[J]. Construction & Building Materials, 2002, 16(3):135-146.
3 王兴国,周朝阳,曾宪桃,等.粘贴预应力CFRP板——混凝土梁抗剪加固试验研究[J].四川建筑科学研究,2005,31(5):46-49
WangXing-guo,ZhouZhao-yang,ZengXian-tao,et al.Experimental study on shear reinforcement of prestressed CFRP plate-concrete beam[J].Sichuan Building Science, 2005,31(5):46-49.
4 卜良桃,王月红.复合砂浆钢筋网加固RC简支梁抗剪性能的试验研究[J].华中科技大学学报:自然科学版,2006,23(4):35-38.
BuLiang-tao,WangYue-hong.Experimental study on RC beams strengthened with ferrocement mortar shear performance[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2006,23(4):35-38.
5 聂建国,蔡 奇,张天申,等.高强不锈钢绞线网-渗透性聚合砂浆抗剪加固的试验研究[J].建筑结构学报,2005,26(2):10-17.
NieJian-guo,CaiQi,ZhangTian-shen,et al.Experimental study on shear behavior of RC beams strengthend with stainless steel wire mesh and permeability polymer mortar[J].Journal of Building Structures, 2005,26(2):10-17.
6 黄华,刘伯权,刘卫铎,等.高强钢绞线网-聚合物砂浆抗剪加固梁二次受力试验研究[J].工业建筑,2009,39(2):123-127.
HuangHua,LiuBo-quan,LiuWei-duo,et al.Experimental study of shear behavior of RC beams strengthened with stainless steel wire mesh and polymer mortar under secondary load[J]. Industrial Construction,2009,39(2):123-127.
7 KimS Y. Tests of reinforced concrete beams strengthened with wire rope units [J]. Engineering Structures,2007,29:2711-2722.
8 崔长利.预应力钢丝绳加固RC混凝土梁桥抗剪性能试验[J].公路交通科技:应用技术版,2018,14(10):204-206.
CuiChang-li.Experimental study on shear performance of RC concrete beam bridge strengthened with prestressed steel wire rope[J].Journal of Highway and Transportation Technology(Application Technology Edition),2018,14(10):204-206.
9 司建辉, 赵恒, 刘茂社. 预应力绕丝加固RC梁抗剪性能试验研究[J]. 工程抗震与加固改造, 2018, 40(4):112-116.
SiJian-hui,ZhaoHeng, LiuMao-she. Experimental research on shear strengthening of reinforced concrete beams using prestressed wire-rope hoops[J].Earthquake Resistant Engineering and Retrofitting, 2018, 40(04):112-116.
10 许心怡. 预应力高强钢丝绳抗剪加固混凝土梁试验研究[D].南京:东南大学交通学院,2017.
XuXin-yi. Experimental study on shear-reinforced concrete beams with prestressed high-strength steel wire rope[D].Nanjing:School of Transportation, Southeast University, 2017.
11 于天来,黄巍.基于遗传算法的体外预应力钢丝绳加固RC梁抗剪承载力计算方法[J].公路交通科技,2015,32(10):82-90,96.
YuTian-lai, HuangWei. Calculation method of shear capacity of RC beams strengthened with external prestressed steel wire ropes based on genetic algorithm[J]. Journal of Highway and Transportation Research and Development, 2015, 32(10): 82-90,96.
12 郭子雄,杨军民,叶勇,等.闭合预应力钢丝绳加固RC梁抗剪性能试验研究[J].中南大学学报:自然科版,2015,46(7):2590-2596.
GuoZi-xiong, YangJun-min, YeYong, et al.Experimental study on shear resistance of RC beams strengthened with closed prestressed steel wire ropes[J].Journal of Central South University:Science and Technology,2015,46(7):2590 -2596.
[1] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[2] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[3] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[4] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[5] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[6] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[7] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[8] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[9] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[10] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[11] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[12] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[13] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[14] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[15] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!