Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 766-772.doi: 10.13229/j.cnki.jdxbgxb20180252

Previous Articles     Next Articles

Analysis of relationship between subgrade soil shear strength and chemical and minerals component

Jing WANG1(),Xiang LYU2,Xiao⁃long QU3,Chun⁃ling ZHONG1(),Yun⁃long ZHANG1   

  1. 1. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
    2. College of Transportation, Jilin University, Changchun 130022, China
    3. Jilin Provincial High Class Highway Construction Bureau, Changchun 130033, China
  • Received:2018-03-21 Online:2019-05-01 Published:2019-07-12
  • Contact: Chun?ling ZHONG E-mail:wangjing0062@sina.com;420519613@qq.com

Abstract:

In order to reveal the variation law of the macro?mechanics properties of the subgrade soil from the mineral composition and the mineral content level, the primary and secondary chemical component measurements of the different plastic index subgrade soils were carried out. The rock mineral composition and clay mineral relative content are determined. Based on the gray relational theory, the correlation between the mineral content and the shear strength and cohesion and the internal friction angle were analyzed. The results show that among the chemical components, FeO, K2O and SiO2 have greatest relational degree with soil shear strength, and the relational degree is greater than 0.9; P2O5 has the greatest relational degree with the cohesion, it is greater than 0.85; Na2O, SiO2, K2O, FeO have greatest relational degree with the internal friction angle, relational degree of Na2O, SiO2 is greater than 0.9, and relational degree of K2O, FeO is greater than 0.8. According to the mineral composition of the whole rock, fs and Q have great relational degree with the shear strength, the cohesion and the internal friction angle. The relational degree is greater than 0.9. While Pl has little relation degree with the macro?mechanics properties, and its effect on shear strength and parameters can be ignored. According to relative content of clay minerals, I/S has the greatest relation degree with the shear strength and cohesion and the internal friction angle. Whereas I has greater relation degree with soil cohesion. K has little relation degree with the shear strength and parameters, so it can be ignored when soil macro?mechanics properties are analyzed.

Key words: road engineering, subgrade soil, shear strength and parameters, complete chemical analysis, gray correlation

CLC Number: 

  • U416.1

Table 1

Basic physical properties of test soil"

土的种类天然含水量/%液限/%塑限/%塑性指数Ip击实试验
最佳含水量/%最大干密度/(g·cm?3)
土样A2.324.713.411.311.12.04
土样B4.935.920.615.315.31.86
土样C5.340.220.120.114.11.83

Fig.1

Cumulative particle size curves"

Fig.2

Forming sample"

Fig.3

Strain type automatic triaxial apparatus"

Fig.4

Shear strength of three soils"

Fig.5

Cohesion of three soils"

Fig.6

Internal friction angle of three soils"

Table 2

Determination of primary and secondary chemistry components of soils"

土的种类SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OP2O5MnOLOI其他总和
土样A(Ip=11.3)79.2210.21.590.370.90.53.1920.040.061.310.62100
土样B(Ip=15.3)68.7614.534.130.371.251.323.071.990.080.093.460.95100
土样C(Ip=20.1)66.7715.284.930.371.241.362.890.790.080.124.032.14100

Table 3

Mineral composition of whole rock"

土的种类QfsPl黏土总量总和
土样A(Ip=11.3)7114123100
土样B(Ip=15.3)6615154100
土样C(Ip=20.1)6114196100

Table 4

Relative content of clay minerals"

土的种类I/SIK总和
土样A(Ip=11.3)52417100
土样B(Ip=15.3)563311100
土样C(Ip=20.1)69229100

Table 5

Relationship between subgrade soil shear strength and primary and secondary chemical component"

SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OP2O5MnOLOI其他

抗剪

强度/kPa

1000.8830.8180.5800.9550.8460.5930.9200.8400.6840.7460.5780.667
2000.9110.8030.5790.9880.8280.5920.9510.8660.6780.7350.5770.660
3000.9220.7980.5780.9890.8220.5910.9630.8760.6760.7320.5770.657
平均值0.9050.8060.5790.9770.8320.5920.9450.8600.6790.7380.5780.662
黏聚力/kPa0.6150.7850.6100.6430.7500.6300.6290.5930.8590.7820.6060.647
内摩擦角/(°)0.9030.7410.5810.8540.7550.5910.8740.9150.6570.6980.5800.642

Table 6

Relationship between subgrade soil shear strength and the mineralcomposition of thewholerock"

QfsPl黏土总量

抗剪

强度/kPa

1000.8170.9510.7430.668
2000.8690.9770.7210.654
3000.9920.9620.4810.435
平均值0.8930.9630.6480.586
黏聚力/kPa0.9270.9640.4840.435
内摩擦角/(°)0.9930.9350.4810.437

Table 7

Relationship between subgrade soil shear strength and relative content of"

I/SIK

抗剪

强度/kPa

1000.9610.6340.418
2000.9570.6200.412
3000.9560.6150.409
平均值0.9580.6230.413
黏聚力/kPa0.8740.7410.435
内摩擦角/(°)0.9390.5770.399
1 李广信. 高等土力学[M]. 北京:清华大学出版社,2014:114⁃116.
2 龚晓南. 软黏土地基土体抗剪强度若干问题[J]. 岩土工程学报,2011,33(10):1596⁃1600.
GongXiao⁃nan. Some problems concerning shear strength of soil in soft clay ground[J]. Chinese Journal of Geotechnical Engineering,2011,33(10):1596⁃1600.
3 周波. 公路路基黄土的湿陷性评价方法研究[D].长春:吉林大学建设工程学院,2009.
ZhouBo. Study on collapsibility evaluation method of loess in roadbed[D]. Changchun:College of Construction Engineering,Jilin University,2009.
4 柏立懂. 合徐高速公路南段膨胀土矿物成分及微结构[J]. 水文地质工程地质,2005(4):13⁃16.
BaiLi⁃dong. Mineral composition and microstructure of expansive soil in south part of Hefei⁃Xuzhou Expressway[J]. Hydrogeology and Engineering Geology,2005(4):13⁃16.
5 柏立懂. 合徐合安高速公路膨胀土的矿物化学成分及微结构的研究[D]. 合肥:合肥工业大学资源与环境工程学院,2005.
BaiLi⁃dong. Research on the composition of expansive soil of He⁃Xu and He⁃An expressway and its microstructure[D]. Hefei:School of Resources and Environment,Hefei University of Technology,2005.
6 闫瑞敏,桂蕾. 滑带土抗剪强度与其矿物成分典型相关性分析[J]. 人民长江,2016,47(8):47⁃50.
YanRui⁃min,GuiLei. Canonical correlation analysis between shear strength and mineral composition of sliding zone soil [J]. Yangtze River,2016,47(8):47⁃50.
7 王小花,刘红军,贾永刚. 黄河口粉质土矿物成分特征及对水动力条件相应的研究[J]. 海洋科学,2008,32(2):42⁃46.
WangXiao⁃hua, LiuHong⁃jun, JiaYong⁃gang. The research on the mineral characteristics of sediment and the response to the hydrodynamic conditions of the tidal flat, at the northern Yellow River Delta[J]. Marine Sciences,2008,32(2):42⁃46.
8 何蕾. 矿物成分与水化学成分对粘性土抗剪强度的控制规律及其应用[D]. 北京:中国地质大学(北京)水资源与环境学院,2014.
HeLei. Impact of mineralogical composition and water chemistry on the shear strength of clay and its application [D]. Beijing: Institute of Water Resources and Environment,China University of Geosciences (Beijing),2014.
9 李景阳,梁风,朱立军,等. 两种典型碳酸盐红土风化剖面的物理化学特征[J]. 中国岩溶,2005,24(1):28⁃34.
LiJing⁃yang,LiangFeng,ZhuLi⁃jun,et al. Physical and chemical properties of two typical weathered profiles of carbonate rocks[J]. Carsologica Sinica,2005,24(1):28⁃34.
10 陈积普,徐则民. 某路基边坡化学风化机理研究[J].水文地质工程地质,2014,41(6):134⁃140.
ChenJi⁃pu,XuZe⁃min. Study on chemical weathering mechanisms of a roadbed slope[J]. Hydrogeology and Engineering Geology,2014,41(6):134⁃140.
11 JTG E40—2007.公路土工试验规程[S].
12 JTG F10—2006.公路路基施工技术规范[S].
13 GB/T14506.28—2010. 硅酸盐岩石化学分析方法第28部分:16个主次成分量测定[S].
14 JY/T009—1996. 转靶多晶体X射线衍射方法通则[S].
15 王毅,岳光华,李维. 石灰岩矿物成分对其集料磨光值的灰色关联分析[J].江苏大学学报:自然科学版,2015,36(3):353⁃356,372.
Wang Yi Yue Guang⁃hua Li We. Analysis of grey incidence between limestone mineral composition and polishing value of aggregate[J]. Journal of Jiangsu University(Natural Science Edition), 2015,36(3):353⁃356,372.
16 单黎黎,何向东,钟志明,等. 基于n阶灰色补偿因子的装备维修保障费用预测模型[J]. 江苏大学学报:自然科学版,2014,35(6):685⁃692.
ShanLi⁃li,HeXiang⁃dong,ZhongZhi⁃ming,et al. Prediction model of equipment maintenance support cost based on n⁃order gray system theory[J]. Journal of Jiangsu University(Natural Science Edition), 2014,35(6):685⁃692.
17 林文玉. 岩土物理力学性质指标的关联度分析[J]. 中国农村水利水电,2007(2):27⁃28.
LinWen⁃Yu. Correlative degree analysis of physical and mechanical properties of geotechnical[J]. China Rural Water and Hydropower,2007(2):27⁃28.
[1] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[2] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[3] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[4] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[5] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[6] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[7] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[8] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[9] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[10] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[11] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[12] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[13] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[14] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[15] LIU Han-bing, ZHANG Hu-zhu, WANG Jing. Effect of dehydration on shear strength properties of compacted clayey soil [J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Wei,LI Wen-hui. Fast collision detection algorithm for space image reconstructio[J]. 吉林大学学报(工学版), 2009, 39(06): 1631 -1634 .
[2] WANG Qing-nian, HE Hong-wen, LI You-de, CHU Liang . Study on Parameter Matching for Parallel Hybrid Electric Vehicle Powertrain[J]. 吉林大学学报(工学版), 2000, 30(01): 72 -75 .
[3] LI Feng . Optimization Conditions and Duality Theory of Semiconvex Multiobjective Programming[J]. 吉林大学学报(工学版), 2000, 30(01): 57 -62 .
[4] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777 -1786 .
[5] SONG Bao-yu,XIE Zhi-jie,ZHANG Feng,WANG Rui-ze,HAO Ming-hui,SU Dai-zhong. Fault diagnosis algorithm for helical gear rotating at low speed on angular domain synchronous average and order tracking analysis[J]. 吉林大学学报(工学版), 2015, 45(2): 454 -459 .
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control[J]. 吉林大学学报(工学版), 2018, 48(3): 853 -858 .
[7] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867 -1872 .
[8] TIAN Jing, HAN Yong-qang, LIU Zhong-chang, LI Jun, LI Kang. Performance and regeneration of diesel particulate filter with fuel borne catalyst on diesel engine[J]. 吉林大学学报(工学版), 2011, 41(01): 18 -0023 .