Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1124-1133.doi: 10.13229/j.cnki.jdxbgxb20171242

Previous Articles    

Damage criterion of reinforced concrete pier based on plastic strain energy density

Jin⁃gang ZHAO1(),Ming ZHANG2(),Yu⁃lin ZHAN2,3,Ming⁃zhi XIE2   

  1. 1. College of Civil Engineering, Guizhou University, Guiyang 550025, China
    2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    3. National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation, Southwast Jiaotong University, Chengdu 610031, China
  • Received:2017-11-16 Online:2019-07-01 Published:2019-07-16
  • Contact: Ming ZHANG E-mail:jgzhao@gzu.edu.cn;zhangming@home.swjtu.edu.cn

Abstract:

A damage model for accurate evaluation of the cross section damage of reinforced concrete pier under dynamic load is established. First, the damage criterion of plastic strain energy density is deduced. Then, the performance level of reinforced concrete pier is established based on the condition of crack propagation. The correspondence relationship between damage index and performance level is determined through analyzing the dynamic damage of 33 quasi-static test model of reinforced concrete pier by the software of ABAQUS, and the evaluation model of the cross section damage of reinforced concrete pier under dynamic load is quantified. Finally, the Support Vector Machine algorithm is used to predict the normalized parameters of the plastic strain energy density damage criterion. The accuracy and applicability of the plastic strain energy density damage criterion and the Support Vector Machine algorithm which were used to analyze the cross section damage of the reinforced concrete pier are verified by numerical examples.

Key words: bridge engineering, plastic strain energy density, dynamic failure criterion, damage index, support vector machine algorithm, normalized parameter

CLC Number: 

  • TU375.3

Fig. 1

Stress-strain curve of concrete"

Fig. 2

Schematic diagram of space pier"

Table 1

Classification of performance levels"

性能水平 破损等级 修复程度描述
基本完好 无明显裂缝出现 无需修复
轻微破损 出现明显裂缝,但可暂时使用 轻微修复
中等破坏 保护层混凝土出现贯通裂缝、剥落 大量修复
严重破坏 核心区混凝土破损严重、出现贯通裂缝、纵筋屈曲或箍筋断裂 需要替换

Fig. 3

"

Fig. 4

Comparison of load?displacement skeleton curves"

Fig. 5

Comparison of real and predictive values of test set"

Fig. 6

Relationship between performance level and damage index"

Table 2

Evaluation criteria of cross section damage"

性能水平 基本完好 轻微破损 中等破坏 严重破坏
损伤指数 D i j 0.2 0.2 < D i j 0.5 0.5 < D i j 0.7 D i j > 0.7

Table 3

Quasi?static test model parameters of reinforced concrete pier"

编号 混凝土强度/MPa 箍筋强度/MPa 纵筋强度/MPa 截面尺寸/mm 配筋率 配箍率 轴压比 跨高比 最大加载幅值/m
L1 24.8 325.0 362.0 400×400 0.014 0.007 0.032 4.00 0.082
C1?1 24.9 459.5 497.0 400×400 0.021 0.016 0.113 3.50 0.102
C2?2 27.1 459.5 497.0 400×400 0.021 0.015 0.156 3.50 0.119
C2?3 26.8 459.5 497.0 400×400 0.021 0.015 0.210 3.50 0.115

Fig.7

Comparison between real and predictive values of damage index"

Fig. 8

Root mean square error between real and predic?tive values of damage index"

Table 4

Elevation criteria of Park-Ang damage model"

损伤等级 基本完好 轻微破坏 中等破坏 严重破坏 倒塌
D 0.0~0.4(可修复的破坏) 0.4~1.0(不可修复的破坏) >1.0

Table 5

Comparison of damage index"

编号 塑性应变能密度损伤准则 Park?Ang损伤模型
L1 0.96 0.90
C1?1 4.24 4.10
C2?2 4.94 8.04
C2?3 3.53 9.45
C3?1 4.42 5.17
C3?3 3.53 10.32
Test1 5.51 3.04
Test2 1.42 1.53
Test6 1.41 1.66
1 缪志伟, 叶列平 . 钢筋混凝土框架-联肢剪力墙结构的地震能量分布研究[J]. 工程力学, 2010, 27(2): 130-141.
Miao Zhi⁃wei , Ye Lie⁃ping . Study on distribution of cumulative hysteretic energy in reinforced concrete frame-coupled shear wall[J]. Engineering Mechanics, 2010, 27(2): 130⁃141.
2 刘英亮, 邢佶慧 . 基于能量的单层球面网壳强震响应规律研究[J]. 建筑结构学报, 2010(增刊2): 30⁃33.
Liu Ying⁃liang , Xing Ji⁃hui . Energy⁃based research on response of single⁃layer reticulated domes subjected to severe earthquakes[J]. Journal of Building Structures, 2010(Sup.2): 30-33.
3 张明, 张瑀, 周广春, 等 . 基于应变能密度的单层球面网壳结构失效判定准则[J]. 土木工程学报, 2014, 47(4): 56⁃63.
Zhang Ming , Zhang Yu , Zhou Guang⁃chun , et al . Criterion for judging failure of single⁃layer latticed dome based on strain energy density[J]. China Civil Engineering Journal, 2014, 47(4): 56⁃63.
4 苗超 . 裂缝对混凝土重力坝动力特性及动力承载力影响的研究[D]. 南京: 南京林业大学土木工程学院, 2015.
Miao Chao . Research on the effects of the dynamic characteristics and the dynamic bearing capacity under the crack of concrete gravity dam[D]. Nanjing: College of Civil Engineering, Nanjing Forestry University, 2015.
5 王洪波 . 基于能量判别的结构地震响应研究[D].合肥: 中国科学技术大学工程科学学院, 2011.
Wang Hong⁃bo . The research on structural seismic response based on energy analysis[D]. Hefei: School of Engineering Science, University of Science and Technology of China, 2011.
6 范立础, 卓卫东 . 桥梁延性抗震设计[M]. 北京:人民交通出版社, 2001.
7 李正, 李忠献 . 基于修正弹塑性损伤模型的钢筋混凝土高桥墩地震损伤分析[J]. 土木工程学报, 2011, 44(7): 71⁃76.
Li Zheng , Li Zhong⁃xian . Seismic damage analysis of RC high bridge piers using a modified elastoplastic damage model[J]. China Civil Engineering Journal, 2011, 44(7): 71⁃76.
8 Chopra A K . 结构动力学-理论及其在地震工程中的应用[M]. 谢礼立, 吕大刚等译. 北京: 高等教育出版社, 2013.
9 GB 50010-2010. 混凝土结构设计规范[S].
10 Park Y J , Ang H S . Mechanistic seismic damage model of reinforced concrete[J]. Journal of Structural Engineering(ASCE), 1985,111: 722⁃739.
11 温凌燕, 娄宇, 聂建国 . 结构大震弹塑性时程分析中的能量反应分析[J]. 土木工程学报, 2014, 47(5): 1⁃8.
Wen Ling⁃yan , Lou Yu , Nie Jian⁃guo . Energy⁃based analysis in elastic⁃plastic time-history analysis of structure under large earthquake[J]. China Civil Engineering Journal, 2014, 47(5): 1⁃8.
12 王洪波, 吴恒安, 王秀喜 . 基于塑性损耗的超高层建筑结构抗震性能分析[J]. 中国科学技术大学学报, 2011, 41(9): 812-819.
Wang Hong⁃bo , Wu Heng⁃an , Wang Xiu⁃xi . Seismic analysis of super high⁃rise structures based on plastic damage[J]. Journal of University of Science and Technology of China, 2011, 41(9): 812⁃819.
13 范书立, 陈明阳, 陈健云, 等 . 基于能量耗散碾压混凝土重力坝地震损伤分析[J]. 振动与冲击, 2011, 30(4): 271⁃275.
Fan Shu⁃li , Chen Ming⁃yang , Chen Jian⁃yun , et al . Seismic damage analysis of a concrete gravity dam based on energy dissipation[J]. Journal of Vibration and Shock, 2011, 30(4): 271⁃275.
14 陆新征, 叶列平, 潘鹏, 等 . 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅱ:关键构件试验[J]. 建筑结构, 2012, 42(11): 23⁃26.
Lu Xin⁃zheng , Ye Lie⁃ping , Pan Peng , et al . Pseudo-static collapse experiments and numerical prediction competition of RC frame structure II: key elements experiment[J]. Building Structure, 2012, 42(11): 23⁃26.
15 Tanaka H , Park R . Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns[D]. Christchurch: University of Canterbury, 1990.
16 Ohno T , Nishioka T . An experimental study on energy absorption capacity of columns in reinforced concrete structures[J]. Proceedings of the Japan Society of Civil Engineers, 1984, 1(2): 137⁃147.
17 Saatcioglu M , Ozcebe G . Response of reinforced concrete columns to simulated seismic loading[J]. ACI Structural Journal, 1989, 86(1): 3⁃12.
18 Matamoros A B . Study of drift limits for high-strength concrete columns[D]. Urbana⁃Champaign: University of Illinois, 1999.
19 Mo Y L , Wang S J . Seismic behavior of RC columns with various tie configurations[J]. Journal of Structural Engineering, 2000, 126(10): 1122⁃1130.
20 Aboutaha R S , Engelhardt M D , Jirsa J O , et al . Rehabilitation of shear critical concrete columns by use of rectangular steel jackets[J]. ACI Structural Journal, 1999, 96(1): 68⁃78.
21 Takemura H , Kawashima K . Effect of loading hysteresis on ductility capacity of bridge piers[J]. Journal of Structural Engineering, 1997, 43(A): 849⁃858.
22 梁循 . 支持向量机算法及其金融应用[M]. 北京:知识产权出版社, 2012.
23 周志华 . 机器学习[M]. 北京: 清华大学出版社, 2017.
[1] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
[2] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[3] HUI Ying-xin,MAO Ming-jie,LIU Hai-feng,ZHANG Shang-rong. Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1725-1734.
[4] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[5] GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan. Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier [J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[6] WEI Zhi-gang, LIU Han-bing, SHI Cheng-lin, GONG Ya-feng. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement [J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[7] WEI Zhi-gang, SHI Cheng-lin, LIU Han-bing, ZHANG Yun-long. Dynamic characteristics of steel-concrete composite simply supported beam under vehicles [J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[8] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[9] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[10] TAN Guo-jin, LIU Zi-yu, WEI Hai-bin, WANG Long-lin. Calculation of natural frequency of simply supported beam bridge reinforced with eccentric prestressed tendons [J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[11] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[12] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading [J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
[13] JIAO Chang-ke, LI Ai-qun, WU Xiao-ping. Double-deck long-span cable-stayed bridge seismic response to multi-support excitation [J]. , 2012, 42(04): 910-917.
[14] LIU Han-bing, ZHENG Ji-guang, ZOU Pin-de. Calculation on bearing capacity of eccentric compression reinforced concrete short column with circular combined-section [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
[15] GONG Ya-feng, CHENG Yong-chun, JIAO Yu-bo. Damage identification of urban overpasses based on static strain data and neural networks optimized by genetic algorithm [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!