Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1818-1825.doi: 10.13229/j.cnki.jdxbgxb20180978

Previous Articles     Next Articles

Parameter estimation of mixed reliability model based on kernel density optimal grouping and gravity search algorithm

Qiao-bin LIU1(),Wen-ku SHI1,Zhi-yong CHEN1(),Lian-meng LUO2,Zhi-yong SU2,Kai-jun HUANG2   

  1. 1. State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, China
    2. Jiangsu Luoshi Vibration Control Co. Ltd. , Haian 226600, China
  • Received:2018-09-25 Online:2019-11-01 Published:2019-11-08
  • Contact: Zhi-yong CHEN E-mail:liuqb17@jlu.edu.cn;chen_zy@jlu.edu.cn

Abstract:

To estimate the parameters of the mixed distribution models which are widely used in reliability modeling, a new parameter estimation method was proposed. The kernel density estimation was introduced to non-parametric fitting of the data. With the minimized mean integration square error, the optimal bandwidth of kernel density estimation (KDE) was obtained. The original data were grouped by the optimal bandwidth of KDE as the group distance, and the statistical histogram was made. The mixed multiplicity of the distribution density function was determined by the histogram. The K-means clustering method was employed to cluster the histograms. The weights of the mixed distribution model were calculated from the clustering results. Then the gravitational search algorithm (GSA) was applied to identify the parameters of the sub-distributions' parameters for the mixed model. Taking the measured displacement signal of vehicle axle as an example, mixed reliability model was developed, in which the model parameters were estimated by the proposed method. Based on the identification results of model parameters, the determination coefficient, Kolmogorov-Smirnov coefficient and average relative error were calculated respectively, with which the effectiveness of the proposed parameter estimation method was verified. This research would lay the foundation for the fatigue load spectrum preparation and laboratory reliability bench test of commercial vehicle. Moreover, it can provide reference for related reliability modeling and model parameter identification.

Key words: vehicle engineering, reliability modeling, parameter identification, kernel density estimation, gravitational search algorithm, clustering

CLC Number: 

  • U270.18

Fig. 1

Flow chart of gravity search algorithm"

Fig.2

Flow chart of new parameter identificationmethod"

Fig.3

Time domain diagram of the displacement signal"

Fig.4

Effect of different grouping numbers onhistogram of frequency distribution"

Fig.5

Optimal histogram group determined bykernel density"

Fig.6

K-means clustering results of statisticalhistograms"

Table 1

Results of mixed model parameter estimation"

模型 数值
混合正态分布 μ 1 = 220.349 ? 1 , σ 1 = 7.674 ? 1 ; μ 2 = 252.801 ? 6 , σ 2 = 11.065 ? 5 ; μ 3 = 280.481 ? 7 , σ 3 = 2.899 ? 7
混合威布尔分布 α 1 = 34.887 ? 7 , β 1 = 4.758 ? 9 , γ 1 = 187.728 ? 2 ; α 2 = 89.960 ? 7 , β 2 = 8.551 ? 6 , γ 2 = 164.981 ? 8 ; α 3 = 48.771 ? 8 , β 3 = 16.953 ? 6 , γ 3 = 231.885 ? 0

Fig.7

Probability density curve identified bymeasured data"

Fig.8

Probability distribution function curve ofmeasured data"

Table 2

Comparison of goodness of fit results"

指标 混合正态分布 混合威布尔分布
R 2 0.992 0 0.993 6
D max 0.034 2 0.010 0
MRE/% 12.91 5.98
1 谢里阳 . 可靠性设计[M]. 北京: 高等教育出版社, 2013.
2 Nagode M , Fajdiga M . An improved algorithm for parameter estimation suitable for mixed Weibull distributions[J]. International Journal of Fatigue, 2000, 22(1): 75-80.
3 Krifa M . A mixed Weibull model for size reduction of particulate and fibrous materials[J]. Powder Technology, 2009, 194(3): 233-238.
4 Bu?ar T , Nagode M , Fajdiga M . Reliability approximation using finite Weibull mixture distributions[J]. Reliability Engineering & System Safety, 2004, 84(3): 241-251.
5 蒋仁言 . 威布尔模型族:特性、参数估计和应用[M]. 北京:科学出版社, 1998.
6 Nwobi F N , Ugomma C A . A comparison of methods for the estimation of Weibull distribution parameters[J]. Advances in Methodology & Statistics, 2014, 11(1): 65-78.
7 方开泰, 许建伦 . 统计分布[M]. 北京:高等教育出版社, 2016.
8 Datsiou K C , Overend M . Weibull parameter estimation and goodness-of-fit for glass strength data[J]. Structural Safety, 2018, 73:29-41.
9 Davies I J . Unbiased estimation of the Weibull scale parameter using linear least squares analysis[J]. Journal of the European Ceramic Society, 2017, 37(8): 2973-2981.
10 魏艳华, 王丙参, 邢永忠 . 指数-威布尔分布参数贝叶斯估计的混合Gibbs算法[J]. 统计与决策, 2017(16):70-73.
10 Wei Yan-hua , Wang Bing-shen , Xing Yong-zhong . Mixed gibbs algorithm of Bayesian estimation of parameters for exponentiated Weibull distribution[J]. Statistics and Decision, 2017(16): 70-73.
11 Ignacio M , Chubynsky M V , Slater G W . Interpreting the Weibull fitting parameters for diffusion-controlled release data[J]. Physica A:Statistical Mechanics & Its Applications, 2017, 486:486-496.
12 吴龙涛, 王铁宁, 杨帆 . 基于贝叶斯法和蒙特卡洛仿真的威布尔型装备器材需求预测[J]. 兵工学报, 2017, 38(12): 2447-2454.
12 Wu Long-tao , Wang Tie-ning , Yang Fan . Demand forecasting of equipment and materials by Weibull distribution based on Bayesian estimation and Monte Carlo simulation[J]. Acta Armamentarii, 2017, 38(12): 2447-2454.
13 郑锐 . 三参数威布尔分布参数估计及在可靠性分析中的应用[J]. 振动与冲击, 2015, 34(5):78-81.
13 Zheng Rui . Parameter estimation of three-parameter Weibull distribution and its application in reliability analysis[J]. Journal of Vibration and Shock, 2015, 34(5): 78-81.
14 王晓峰, 张英芝, 申桂香,等 . 基于 ITLS 和 DE 的加工中心三参数威布尔分布[J]. 华南理工大学学报:自然科学版, 2015, 43(6): 84-88.
14 Wang Xiao-feng , Zhang Ying-zhi , Shen Gui-xiang , et al . Three-parameter Weibull distribution of machining center based on ITLS and DE[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(6): 84-88.
15 许伟, 程刚, 黄林,等 . 基于混沌模拟退火PSO算法的威布尔分布参数估计应用研究[J]. 振动与冲击, 2017, 36(12): 134-139.
15 Xu Wei , Cheng Gang , Huang Lin , et al . A chaotic simulated PSO algorithm application for Weibull distribution parameter estimation[J]. Journal of Vibration and Shock, 2017, 36(12): 134-139.
16 ?rkcü H H , ?zsoy V S , Aksoy E , et al . Estimating the parameters of 3-p, Weibull distribution using particle swarm optimization: a comprehensive experimental comparison[J]. Applied Mathematics & Computation, 2015, 268(9): 201-226.
17 Abbasi B , Niaki S T A , Khalife M A , et al . A hybrid variable neighborhood search and simulated annealing algorithm to estimate the three parameters of the Weibull distribution[J]. Expert Systems with Applications, 2011, 38(1): 700-708.
18 Abbasi B , Hosseinifard S Z , Coit D W . A neural network applied to estimate Burr XII distribution parameters[J]. Reliability Engineering & System Safety, 2010, 95(6): 647-654.
19 Xu M , Droguett E L , Lins I D , et al . On the q-Weibull distribution for reliability applications: an adaptive hybrid artificial bee colony algorithm for parameter estimation[J]. Reliability Engineering & System Safety, 2017, 158: 93-105.
20 Lacour C , Massart P , Rivoirard V . Estimator selection: a new method with applications to kernel density estimation[J]. Sankhya A, 2017, 79(2): 298-335.
21 Xu X , Yan Z , Xu S . Estimating wind speed probability distribution by diffusion-based kernel density method[J]. Electric Power Systems Research, 2015, 121: 28-37.
22 Silverman B W . Density Estimation for Statistics and Data Analysis[M]. London: Chapman & Hall,1986.
23 MacQueen J . Some methods for classification and analysis of multivariate observations[C]∥Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,California, 1967: 281-297.
24 Rashedi E , Nezamabadi-Pour H , Saryazdi S . GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248.
25 Li C , Zhou J , Xiao J , et al . Parameters identification of chaotic system by chaotic gravitational search algorithm[J]. Chaos Solitons & Fractals, 2012, 45(4): 539-547.
[1] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[2] Ren HE,Kun TU. Electromagnetic brake with changed⁃temperature air gap width [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1777-1785.
[3] Li-qiang JIN, Duan-yang TIAN, Hao TIAN, Meng-meng LIU. Brake force assistant technology for vehicle electronicstability control system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1764-1776.
[4] Jie LI, Wen-cui GUO, Qi ZHAO, Sheng-feng GU. Road roughness identification based on vehicle responses [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1810-1817.
[5] Xin GUAN,Hao JIN,Chun-guang DUAN,Ping-ping LU. Estimation of lateral slope of vehicle driving road [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1802-1809.
[6] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[7] Wei-min ZHUANG,Yang LIU,Peng-yue WANG,Hong-da SHI,Ji-shuan XU. Simulation on peeling failure of self⁃piercing riveted joints insteel and aluminum alloy dissimilar sheets [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1826-1835.
[8] Bai-chao CHEN,Meng ZOU,Zhao-long DANG,Han HUANG,Yang JIA,Rui-yang SHI,Jian-qiao LI. Experiment on pressure⁃sinkage for mesh wheels of CE⁃3lunar rover on lunar regolith [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
[9] Fang-wu MA,Li-wei NI,Liang WU,Jia-hong NIE,Guang-jian XU. Position and attitude closed loop control of wheelleggedall terrain mobile robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1745-1755.
[10] Jun-jun LI,Jian-nong CAO,Bei-bei CHENG,Juan LIAO,Ying-ying ZHU. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2098-2108.
[11] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[12] Zhen-hai GAO,Tian-jun SUN,Lei HE. Causal reasoning decision⁃making for vehicle longitudinal automatic driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1392-1404.
[13] Bo ZHANG,Jian-wei ZHANG,Kong-hui GUO,Hai-tao DING,Hong-qing CHU. Current control of permanent magnet synchronous motor for road feeling simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1405-1413.
[14] Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427.
[15] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Feng, Cao Xi-bin, Geng Yun-hai. Flyaround orbit design and keep control for onorbitservicing spacecraft in eccentric orbits[J]. 吉林大学学报(工学版), 2006, 36(03): 410 -0416 .
[2] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1370 -1373 .
[3] Hong Wei;Lü Qing-sheng;Tan Man-zhi;Guo Ying-nan;Ai Sen-lin . Design and application of measure system for ethanol and acetaldehyde
emissions from engine fueled with ethanol/diesel blends
[J]. 吉林大学学报(工学版), 2006, 36(06): 885 -0858 .
[4] Xu Tao,Cheng Fei,Yu Lan,Wang Yong-li,Xiu Hang . New method for structural static reanalysis of topological modifications
based on preconditioning Lanczos algorithm
[J]. 吉林大学学报(工学版), 2007, 37(05): 1214 -1219 .
[5] Yang Zhi-jun; Chen Yu-dong; Chen Xin . Dynamic topological optimization of griddle under multiple frequencies constraints[J]. 吉林大学学报(工学版), 2008, 38(03): 609 -0613 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1349 -1353 .
[7] JIANG Lin,YAN Ji-hong,ZANG Xi-zhe,ZHAO Jie . New method for ultrasonic absolute localization[J]. 吉林大学学报(工学版), 2009, 39(01): 188 -193 .
[8] Identification method of gasliquid twophase flow pattern based on image contour feature and particle swarm optimized neural network . ZHOU Yun-long1,LI Hong-wei2,CHEN Fei2
[J]. 吉林大学学报(工学版), 2009, 39(03): 673 -0678 .
[9] Xue Dan,Cao Xi-bin. Decentralized estimation algorithm of relative orbit for satellite formation flying[J]. 吉林大学学报(工学版), 2006, 36(06): 1003 -1007 .
[10] Wu Yonggui, Wang Shuxun, Wang Fei. Twodimensional harmonics frequency estimation in additive gaussian noise background based on quaternion and hypercomplex[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 122 -0125 .