Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1826-1835.doi: 10.13229/j.cnki.jdxbgxb20181075

Previous Articles     Next Articles

Simulation on peeling failure of self⁃piercing riveted joints insteel and aluminum alloy dissimilar sheets

Wei-min ZHUANG(),Yang LIU,Peng-yue WANG,Hong-da SHI,Ji-shuan XU   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2018-10-12 Online:2019-11-01 Published:2019-11-08

Abstract:

In order to study the peeling failure behavior of steel-aluminum self-piercing riveted (SPR) joints, peeling tests and simulation studies were carried out on two kinds of dissimilar SPR joints in 5754 aluminum alloy and Q235 steel sheets. The finite element model of T-type SPR joint was established based on the modified Mohr-Coulomb (MMC) failure criterion. The tensile failure process of the two joints under peeling condition was simulated. The reliability of the finite element model was verified by comparing test and simulation results, and the peeling failure behavior of the joint was analyzed. The results show that the joint has better mechanical properties when the steel sheet is used as the lower sheet, and the finite element model can better predict the failure mode and mechanical properties of the joint under peeling condition. The failure mode of the aluminum-steel joint is the separation of the rivet from the upper sheet, the stress concentration is located at the rivet tail and rivet head area of the loaded side during the peeling process, and the riveted area of the upper sheet at unloaded side first failed. The failure mode of the steel-aluminum joint is the separation of the rivet from the lower sheet, the stress concentration is located at the edge of rivet head and inside of rivet tail of the loaded side during the peeling process. Delamination damage occurred in the rivet area of the bottom sheet, and the delamination damage region extended to the rivet area of the unloaded side.

Key words: vehicle engineering, self-piercing riveting, MMC failure model, peeling simulation, failure behavior

CLC Number: 

  • U270.4

Table 1

Mechanical properties of sheet materials"

材料 密度/(kg·m-3)

弹性模

量/GPa

泊松比 屈服强度/MPa 抗拉强度/MPa
Q235钢 7 800 200 0.3 251.9 426.6
5754铝合金 2 700 70 0.3 162.1 244.1

Fig.1

Dimensions of the rivet and die (mm)"

Fig.2

Dimensions and shape of the joints"

Fig.3

Cross sections of the joints"

Table 2

Static failure load and maximumdisplacement of each joint"

接头 静失效载荷 最大位移
均值/N 标准差 均值/mm 标准差
铝-钢 954 43.77 18.3 0.91
钢-铝 1142 57.67 22.9 1.26

Fig.4

Load-displacement curves of different joints"

Fig.5

Different failed joints for peel tests"

Table 3

Parameters of hardening formula for materials"

参 数 5754铝合金 Q235钢
A/MPa 242.9 605.3
n 0.19 0.271
C 86.1 206.6

Fig.6

Calculating flow chart of three axis stressand Rhodes angle parameter"

Table 4

Three axis stress, Rhodes angle parameter and fracture strain of materials"

材料 试件类型 应力三轴度 罗德角参数

断裂

应变

5754铝合金 单向拉伸 0.394 0.835 0.535
剪切试件 0.046 0.061 0.432
缺口10 mm 0.539 0.305 0.421
缺口6.67 mm 0.561 0.204 0.410
Q235钢 单向拉伸 0.396 0.852 0.771
剪切试件 0.075 0.010 0.752
缺口10 mm 0.517 0.404 0.663
缺口6.67 mm 0.556 0.351 0.646

Table 5

MMC model parameters of materials"

材 料 c 1 c 2 c 3 LSE
5754铝合金 0.013 2.172 0.935 0.002 2
Q235钢 0.054 1.989 0.933 0.000 1

Fig.7

Schematic diagram of parameter optimization with genetic algorithm"

Fig.8

Failure surfaces of materials"

Fig.9

Finite element model of joint"

Fig.10

Failure modes of the joints obtained bysimulation"

Fig.11

Load-displacement curves of different joints"

Fig.12

Stress cloud of aluminum-steel joint"

Fig.13

Stress and strain clouds of uppersheet at r=0.49"

Fig.14

Stress variation curve of upper sheetat failure point"

Fig.15

Stress state of joint at critical points ofload-displacement curve"

Fig.16

Stress cloud of steel-aluminum joint"

Fig.17

Stress and strain clouds of lower sheetat r=0.93"

Fig.18

Stress variation curve of lower sheetat failure point"

Fig.19

Stress state of joint at critical points ofload-displacement curve"

1 李永兵, 马运五, 楼铭, 等 . 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1-23.
1 Li Yong-bing , Ma Yun-wu , Lou Ming , et al . Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1-23.
2 He X C , Zhao L , Deng C J , et al . Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy[J]. Materials and Design, 2015, 65: 923-933.
3 邢保英, 何晓聪, 王玉奇, 等 . 多铆钉自冲铆接头力学性能机理[J]. 吉林大学学报: 工学版, 2015, 45(5): 1488-1494.
3 Xing Bao-ying , He Xiao-cong , Wang Yu-qi , et al . Mechanism of mechanical properties of self-piercing riveted joints with multiple rivets[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5): 1488-1494.
4 Zhang C Y , Gou R B , Yu M , et al . Mechanical and fatigue properties of self-piercing riveted joints in high-strength steel and aluminium alloy[J]. Journal of Iron and Steel Research International, 2017, 24(2): 214-221.
5 张先炼, 何晓聪, 程强 . 钢铝合金组合板自冲铆接头的力学性能研究[J]. 热加工工艺, 2016, 45(15): 136-139.
5 Zhang Xian-lian , He Xiao-cong , Cheng Qiang , et al . Study on mechanical performance of self-piercing riveted joints of steel and aluminum alloy assemble sheets[J]. Hot Working Technology, 2016, 45(15): 136-139.
6 Huang L , Moraes J F C , Sediako D G , et al . Finite-element and residual stress analysis of self-pierce riveting in dissimilar metal sheets[J]. Journal of Manufacturing Science and Engineering, 2017, 139(2): 1-11.
7 钟毅, 林健, 雷永平, 等 . 自冲铆接接头拉剪强度的数值模拟研究[J]. 材料工程, 2011, 11: 18-22.
7 Zhong Yi , Lin Jian , Lei Yong-ping , et al . Numerical simulation of lap-shear strength of self-piercing riveting joint[J]. Journal of Materials Engineering, 2011, 11: 18-22.
8 Mori K , Abe Y , Kato T . Self-pierce riveting of multiple steel and aluminium alloy sheets[J]. Journal of Materials Processing Technology, 2014, 214(10): 2002-2008.
9 Bouchard P O , Laurent T , Tollier L . Numerical modeling of self-pierce riveting—from riveting process modeling down to structural analysis[J]. Journal of Materials Processing Technology, 2008, 202(1): 290-300.
10 Ma Y W , Lou M , Li Y B , et al . Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges[J]. Journal of Materials Processing Technology, 2018, 251: 282-294.
11 余康, 邢保英, 何晓聪, 等 . 钢/铝异种板自冲铆接头的腐蚀性能研究[J]. 热加工工艺, 2015, 47(15): 1-5.
11 Yu Kang , Xing Bao-ying , He Xiao-cong , et al . Study on corrosion properties of self-piercing riveted joints of steel/aluminum dissimilar sheet [J]. Hot Working Technology, 2015, 47(15): 1-5.
12 Bao Y B , Wierzbicki T . A comparative study on various ductile crack formation criteria[J]. Transactions of the Asme Journal of Engineering Materials and Technology, 2004, 126(3): 314-324.
13 Bai Y L , Wierzbicki T . Application of extended Mohr–Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20.
14 Eller T K , Greve L , Andres M T , et al . Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties[J]. Journal of Materials Processing Technology, 2014, 214(6): 1211-1227.
15 金鑫 . 铝钢异种金属自冲铆接工艺仿真优化研究[D]. 上海: 上海交通大学机械与动力工程学院, 2012.
15 Jin Xin . Research on the simulation and optimization of self-piercing riveting process for dissimilar materials[D]. Shanghai: School of Mechanical Engineering, Shanghai Jiaotong University, 2012.
16 Abe Y , Kato T , Mori K . Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die[J]. Journal of Materials Processing Technology, 2009, 209(8): 3914-3922.
[1] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[2] Ren HE,Kun TU. Electromagnetic brake with changed⁃temperature air gap width [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1777-1785.
[3] Li-qiang JIN, Duan-yang TIAN, Hao TIAN, Meng-meng LIU. Brake force assistant technology for vehicle electronicstability control system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1764-1776.
[4] Jie LI, Wen-cui GUO, Qi ZHAO, Sheng-feng GU. Road roughness identification based on vehicle responses [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1810-1817.
[5] Xin GUAN,Hao JIN,Chun-guang DUAN,Ping-ping LU. Estimation of lateral slope of vehicle driving road [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1802-1809.
[6] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[7] Qiao-bin LIU,Wen-ku SHI,Zhi-yong CHEN,Lian-meng LUO,Zhi-yong SU,Kai-jun HUANG. Parameter estimation of mixed reliability model based on kernel density optimal grouping and gravity search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1818-1825.
[8] Bai-chao CHEN,Meng ZOU,Zhao-long DANG,Han HUANG,Yang JIA,Rui-yang SHI,Jian-qiao LI. Experiment on pressure⁃sinkage for mesh wheels of CE⁃3lunar rover on lunar regolith [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
[9] Fang-wu MA,Li-wei NI,Liang WU,Jia-hong NIE,Guang-jian XU. Position and attitude closed loop control of wheelleggedall terrain mobile robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1745-1755.
[10] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[11] Zhen-hai GAO,Tian-jun SUN,Lei HE. Causal reasoning decision⁃making for vehicle longitudinal automatic driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1392-1404.
[12] Bo ZHANG,Jian-wei ZHANG,Kong-hui GUO,Hai-tao DING,Hong-qing CHU. Current control of permanent magnet synchronous motor for road feeling simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1405-1413.
[13] Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427.
[14] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
[15] Xiao-jian HAN,Wei-qiang ZHAO,Li-jun CHEN,Hong-yu ZHENG,Yang LIU,Chang-fu ZONG. Local path planning of bus based on RS-RRT algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1428-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[2] Zhang Xue-cheng,Zhou Chang-ming,Yu Li-juan,Han Chun-xue . Control method of weight rearrangement during loading
process of dead weight force standard machine
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 73 -77 .
[3] Huang Da,Zhao Xi-hua,Song Min-xia,Feng Ji-cai . Finite element modeling of residual stresses in the diffusion
bonding joints of TC4/ZQSn10-10
[J]. 吉林大学学报(工学版), 2007, 37(05): 1078 -1082 .
[4] Fang Zhigeng,Liu Sifeng,Ruan Aiqing. Pure Strategy Solution and Venture Problem of Grey Matrix Game Based on Undeterminable Directly Interval Grey Number[J]. 吉林大学学报(工学版), 2006, 36(01): 137 -0142 .
[5] Li Jie, Zhuang Ji-de, Wei Dong, Wan Yi-qiang. Comparative traction performance tests between bionic camel foot tire and common tire[J]. 吉林大学学报(工学版), 2006, 36(04): 510 -513 .
[6] Xiao Ping-ping,Tian Yan-tao,Yang Xiao-ping . Algorithm to identify highbandwidth flows
based on packet drop history
[J]. 吉林大学学报(工学版), 2006, 36(05): 793 -0798 .
[7] Song Chuan-xue, Cai Zhang-lin, An Xiao-juan . Virtual simulation and experiments on vehicle ride comfort
[J]. 吉林大学学报(工学版), 2007, 37(02): 259 -0262 .
[8] Zhao Hong-wei;Wu Bo-da;Liu Guo-song;Cheng Guang-ming;Yang Zhi-gang;Wang Tao . New type piezoelectric stepping rotary actuator[J]. 吉林大学学报(工学版), 2006, 36(06): 898 -902 .
[9] Na Jing-xin, Yan Ya-kun, Zhuang Wei-min . Improvement of blank shape prediction precision of deep drawing stamping part by thickness threshold value method
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 20 -23 .
[10] GAO Shu-Na, DENG Zhao-Xiang, HU Yu-Mei. Optimization of car interior low frequency noise based on sensitivity analysis[J]. 吉林大学学报(工学版), 2009, 39(05): 1130 -1136 .