Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 72-82.doi: 10.13229/j.cnki.jdxbgxb20190955

Previous Articles     Next Articles

Powertrain configuration and power distribution of extended electric vehicle based on open winding motor

Liang CHU1(),Li-jia DONG1,Nan XU1(),Li-feng ZHANG2,Yi-fan JIA1,Zhi-hua YANG1   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.SAIC MOTOR Commercial Vehicle Technical Center,Shanghai 200438,China
  • Received:2019-08-09 Online:2021-01-01 Published:2021-01-20
  • Contact: Nan XU E-mail:chuliang@jlu.edu.cn;nanxu@jlu.edu.cn

Abstract:

A new type of electric vehicle powertrain configuration was proposed in order to make use of the flexibility of open-winding permanent magnet synchronous motor in power distribution between dual energy sources, and realized the process from power distribution instruction formation to instruction following under this configuration. First, an expected power calculation method based on fuzzy control is proposed to make the main energy source work in high efficiency zone. Then, at the level of motor control, based on the voltage vector model of dual inverters, two distribution methods, namely precise power following and linear distribution, are proposed to realize the expected power following of primary and secondary energy sources. The simulation results show that under the voltage vector distribution method, the motor speed and torque follow well, and the torque fluctuation is limited within 3 N·m.

Key words: extended-range electric vehicles, open winding motor, fuzzy control, vector control, power allocation

CLC Number: 

  • TM351

Fig.1

Power system configuration of an extended-range electric vehicle based on an open-winding motor"

Fig.2

Expected power calculation diagram of inverter 1"

Fig.3

Input and output membership function curves"

Table 1

Fuzzy rules"

SOC需求功率逆变器1期望功率
较低
较高
较高
较低
较高较高
较高
较低
较高较高

Fig.4

Fuzzy regular surface graph"

Table 2

Vehicle parameters"

参数数值
长×宽×高/mm×mm×mm4600×1785×1435
整备质量/kg1550
满载质量/kg1930
迎风面积/m22.56
空气阻力系数0.28
轮胎滚动半径/mm307
电池组持续放电功率/kW660
滚动阻力系数0.015
减速器总速比88.28
发动机额定功率/kW555
传动系效率0.95
电机最大功率/kW80

Fig.5

Demand power distribution diagram"

Fig.6

Dual inverter system model diagram"

Fig.7

Dual inverter voltage vector synthesis process"

Fig.8

Schematic diagram of voltage vector distribution and power distribution"

Fig.9

Sector partition and voltage vector synthesis"

Table 3

Sector division"

Nθ/(o)Nθ/(o)
1[0,60]4[180,240]
2[60,120]5[240,300]
3[120,180]6[300,360]

Table 4

Each sector corresponds to the analytic formula"

扇区号解析表达式扇区号解析表达式
1y=-3x+2Vdc4y=-3x-2Vdc
2y=2/2Vdc5y=-2/2Vdc
3y=3x+2Vdc6y=3x-2Vdc

Fig.10

An example of an accurate power tracking method"

Fig.11

An example of linear allocation"

Fig.12

Flow chart of voltage vector allocation method selection strategy"

Fig.13

Configuration scheme of open winding motor drive system"

Table 5

Basic parameters of drive system"

对 象类 型参 数
求解器求解类型离散系统
采样时间 Ts/s5 × 10-7
电机电机类型永磁同步电机
极对数p04
定子电阻Rs0.1
永磁磁链的基本幅值ψf/Wb0.2
额定转速/(r·min-1)8000
额定转矩/(N·m)85
最大功率/kW80
d轴、q轴电感[Ld,Lq]/F[0.0012,0.0015]
转子的转动惯量Jm/(kg·m-2)0.011
库伦黏性阻力系数[0.001,0.0005]
逆变器导通电阻Ron0.01
前向压降Vf/V0.8
每相电流容量imax/A160
能量源主、次能量源直流母线电压[Vdc1,Vdc2]/V[300,200]

Table 6

Voltage vector distribution mode"

电压矢量

分配模式

具体情况模式号
精确功率跟随逆变器1功率跟随偏差DPinv1_AF=00
逆变器1功率跟随偏差DPinv1_AF0-1
线性分配方法逆变器1功率跟随偏差DPinv1_LP=0-2

逆变器1功率跟随偏差DPinv1_LP0

us*? 可以被合成

-3
us*?无法被合成-4

Fig.14

Demand power distribution curve"

Fig.15

Voltage vector distribution mode number"

Fig.16

Expected motor speed, actual motor speed curve"

Fig.17

Motor expected torque, electromagnetic torque, load curve"

1 沈启平. 车用高功率密度永磁同步电机的研究[D]. 沈阳:沈阳工业大学电气工程学院, 2012.
Shen Qi-ping. Research on high power density permanent magnet synchronous motor for vehicle[D]. Shenyang: School of electrical engineering, Shenyang University of Technology, 2012.
2 韩康. 电动汽车用永磁同步电机控制系统研究[D]. 大庆:东北石油大学电气信息工程学院, 2018.
Han Kang. Research on permanent magnet synchronous motor control system for electric vehicle[D]. Daqing: School of Electrical Information Engineering, Northeast Petroleum University, 2018.
3 蔡萍, 李永岗, 赵赫. 双三相永磁同步电机在电动汽车中的应用研究[J]. 微特电机, 2019, 47(1): 59-62, 69.
Cai Ping, Li Yong-gang, Zhao He. The application of dual three-phase permanent magnet synchronous motor in electric vehicle[J]. Small Special Electrical Machines, 2019, 47(1): 59-62, 69.
4 Kumar K V P, Kumar T V. An effective four-level Voltage switching state algorithm for direct torque controlled open end winding induction motor drive by using two two-level inverters[J]. Electric Power Components & Systems, 2017, 45(19): 2175-2187.
5 Kunisetti V P K, Kodumur Meesala R E, Thippiripati V K. Improvised predictive torque control strategy for an open end winding induction motor drive fed with four-level inversion using normalized weighted sum model[J]. IET Power Electronics, 2018, 11(5): 808-816.
6 Vinod B R, Baiju M R, Shiny G. Five level inverter fed space vector based direct torque control of open-end winding induction motor drive[J]. IEEE Transactions on Energy Conversion, 2018, 33(3):1392-1401.
7 Sandulescu P, Meinguet F, Kestelyn X, et al. Control strategies for open-end winding drives operating in the flux-weakening region[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4829-4842.
8 Vinod B R, Baiju M R, Shiny G. Five level inverter fed space vector based direct torque control of open-end winding induction motor drive[J]. IEEE Transactions on Energy Conversion, 2018, 33(3):1392-1401.
9 周文志. 混合逆变器开绕组永磁同步电机容错控制技术研究[D]. 杭州:浙江大学电气学院, 2016.
Zhou Wen-zhi. Fault-tolerant control technology of hybrid inverter open-winding permanent magnet synchronous motor [D]. Hangzhou:School of Electrical Engineering, Zhejiang University, 2016.
10 赵克, 安群涛, 孙力. 容错逆变器PMSM无位置传感器控制系统[J]. 电机与控制学报, 2010, 14(4): 25-30.
Zhao Ke, An Qun-tao, Sun Li. Fault tolerant inverter PMSM position sensorless control system[J]. Electric Machines and Control, 2010, 14(4): 25-30.
11 Park J S, Nam K. Dual inverter strategy for high speed operation of HEV permanent magnet synchronous motor[C]∥IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 2006: 488-494.
12 Priestley M, Fletcher J E, Tan C. Space-vector PWM technique for five-phase open-end winding PMSM drive operating in the over-modulation region[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 6816-6827.
13 林斌. 混合逆变器开绕组永磁同步电机驱动系统研究[D]. 杭州:浙江大学电气工程学院, 2015.
Lin Bin. Research on drive system of open-winding permanent magnet synchronous motor of hybrid inverter [D]. Hangzhou:School of Electrical Engineering, Zhejiang University, 2015.
14 Welchko B A. A double-ended inverter system for the combined propulsion and energy management functions in hybrid vehicles with energy storage[C]∥IEEE Industrial Electronics Society, Raleigh, NC, USA, 2005: 1401-1406.
15 Casadei D, Grandi G, Lega A, et al. Multilevel operation and Input power balancing for a dual two-level inverter with insulated DC sources[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1815-1824.
16 Chu L, Jia Y F, Chen D S, et al. Research on control strategies of an open-end winding permanent magnet synchronous driving motor(OW-PMSM)-equipped dual inverter with a switchable winding mode for electric vehicles[J]. Energies, 2017, 10(5): No 616.
17 Camara M B, Gualous H, Gustin F, et al. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—polynomial control strategy[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 587-597.
18 Listwan J, Pieńkowski K. Field-oriented control of five-phase induction motor with open-end stator winding[J]. Archives of Electrical Engineering, 2016, 65(3): 395-410.
[1] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[2] WANG Wei, WANG Qing-nian, TIAN Yong-jun, WANG Ren-guang, WEN Quan. Control strategy for compound power slit hybrid electric bus based on fuzzy control [J]. 吉林大学学报(工学版), 2017, 47(2): 337-343.
[3] MA Bei, ZHANG Hai-lin, ZHANG Zhao-wei, ZHONG Ming. Imperfect channel state information based D2D power allocation algorithm [J]. 吉林大学学报(工学版), 2016, 46(4): 1320-1324.
[4] NIE Hai-tao, LONG Ke-hui, MA Jun, ZHANG Lei, MA Xi-qiang. Face recognition based on fast scale invariant feature transform algorithm and fuzzy control [J]. 吉林大学学报(工学版), 2016, 46(2): 549-555.
[5] CHEN Jie, MO Wei. Adaptive fuzzy sliding mode control for crawler-type mobile manipulators [J]. 吉林大学学报(工学版), 2015, 45(3): 892-898.
[6] MA Xu-hui, LIU Xiao-ming, ZHANG Jin-jin. Oversaturated intersection traffic signal control method considering bus priority [J]. 吉林大学学报(工学版), 2015, 45(3): 748-754.
[7] DONG Bing,TIAN Yan-tao,ZHOU Chang-jiu. Fuzzy logic-based optimal control method for energy management of pure electric vehicle [J]. 吉林大学学报(工学版), 2015, 45(2): 516-525.
[8] ZHAO Xiao-hui,SHA Jing-qi. Resource allocation algorithm in DF relay assisted OFDM cognitive radio systems [J]. 吉林大学学报(工学版), 2014, 44(5): 1481-1487.
[9] HAN Kyong-won, TIAN Yan-tao, KONG Yong-su, ZHANG Ying-hui, LI Jin-song. Adaptive decoupled sliding mode control for the ball and plate system [J]. 吉林大学学报(工学版), 2014, 44(3): 718-725.
[10] YE Jin-hua,LI Di,YE Feng. Dual reinforcement learning adaptive fuzzy control of wheeled mobile robot [J]. 吉林大学学报(工学版), 2014, 44(3): 742-749.
[11] ZHAO Xiao-hui, YANG Wei-wei, JIN Xiao-guang. Selective subcarrier relaying and power allocation algorithm for multi-relay-assisted OFDM systems [J]. 吉林大学学报(工学版), 2014, 44(2): 478-484.
[12] WANG Qing-nian, WANG Jun, CHEN Hui-yong, ZENG Xiao-hua, TANG Xian-zhi. Accelerating and braking intention identification in hybrid vehicle [J]. 吉林大学学报(工学版), 2014, 44(2): 281-286.
[13] LI Jing, YU Chun-xian. Vehicle chassis integrated control system based on fuzzy and PID [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 509-513.
[14] MA Wen-xing, LIU Bin, LIU Chun-bao, LIU Hao. Hydrodynamic speed adjusting system and its control of wind turbine [J]. 吉林大学学报(工学版), 2013, 43(05): 1276-1283.
[15] SHI Yu-chen, BAI Bao-ming. Inference cancellation based on superposition modulation and adaptive power allocation [J]. 吉林大学学报(工学版), 2012, 42(01): 213-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!