Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 810-819.doi: 10.13229/j.cnki.jdxbgxb20200070

Previous Articles     Next Articles

Shift nonlinear modeling and control of automated mechanical transmission in pure electric vehicle

Qiang SONG1,2(),Dan-ting SUN1,2,Wei ZHANG1,2   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.National Engineering Laboratory for Electric Vehicles,Beijing Institute of Technology,Beijing 100081,China
  • Received:2020-02-11 Online:2021-05-01 Published:2021-05-07

Abstract:

Firstly, linear and nonlinear multi-freedom torsional vibration models of the electrified powertrain are established respectively which contains a clutchless two-speed Automated Mechanical Transmission (AMT). The sliding sleeve's speed fluctuation and dynamic behaviors of the two models at different phases of shift process are analyzed. The differences of shift quality between the two models are compared. Secondly, a time delay Proportional-Integral-Derivative (PID) control method of speed difference at the motor speed phase is proposed to improve shift quality. The results show that the nonlinear torsional vibration of gears extends shift time, increases shift impact and friction work of synchronizer. Appropriate time delay can decrease shift time and minish impact peak and friction work.

Key words: vehicle engineering, pure electric vehicle, automated mechanical transmission(AMT), nonlinear dynamics, shift process, shift quality

CLC Number: 

  • U463

Fig.1

Structure of two-speed AMT powertrainsystem in pure electric vehicle"

Fig.2

Schematic diagram of physical processin each phase of shift process"

Fig.3

Clutchless AMT shift process strategy"

Fig.4

Linear torsional vibration model ofpowertrain system"

Fig.5

Mesh model of single helical gear pair"

Fig.6

Nonlinear torsional vibration model ofpowertrain system"

Table 1

Basic parameters of gear"

参数一挡齿轮二挡齿轮主减速器齿轮
旋向右/左右/左右/左
齿数17/4823/4219/75
模数/mm2.52.52.5
螺旋角/(°)17.0817.0820
基圆半径/(10-3 m)

20.89/

58.98

28.26/

51.53

27.61/

105.4

转动惯量/(10-4 kg·m2)-/55.67-/25.41—/825
平均啮合刚度/(108 N·m-1)4.85.05.1
刚度变化幅值/(107 N·m-1)2.22.04.0
半齿侧间隙/10-5 m1.01.01.0
静态误差幅值/10-6 m5.05.05.0

Table 2

Powertrain parameters"

参数数值
电机转动惯量/(kg·m2)0.047
变速器输入轴转动惯量/(10-4 kg·m2)6.93
接合套转动惯量/(10-4 kg·m2)1.54
变速器中间轴转动惯量/(10-4 kg·m2)11
半轴与变速器输出轴总惯量/(kg·m2)0.0825
车轮转动惯量/(kg·m2)0.915
整车等效转动惯量/(kg·m2)145
半轴扭转刚度/(N·m·rad-1)5000
半轴扭转阻尼/(N·m·s·rad-1)15.6
轮胎扭转刚度/(N·m·rad-1)4500
轮胎扭转阻尼/(N·m·s·rad-1)102.2

Fig.7

Rotating speed curve of the sliding sleevein upshift process"

Table 3

Phases time in upshift process"

模型卸载摘挡

电机

调速

机械

同步

拨环~

挂挡

转矩

恢复

总时长
线性153.352.8352.2159.511.0121.5850.3
非线性153.352.8349.4175.610.5121.5863.1

Fig.8

Rotating speed difference curves of thesecond ring and sleeve at mechanical synchronization phase"

Fig.9

Instantaneous transmission ratio of secondgear at motor speed control phase"

Table 4

Upshift results with different time delay"

延迟时间/ms

机械同步

时长/ms

换挡总时长/ms

调速后转差/

(r?min-1)

无延时125.9863.133.6
5114.5857.832.1
10106.4854.730.9
20105.6865.930.4

Fig.10

Vehicle impact in the shift process"

Fig.11

Friction work curve"

1 Kim Y K, Kim H W, Lee I S, et al. A speed control for the reduction of the shift shocks in electric vehicles with a two-speed AMT[J]. Journal of Power Electronics, 2016, 16(4):1355-1366.
2 Chai B B, Zhang J W, Wu S F. Compound optimal control for shift processes of a two-speed automatic mechanical transmission in electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(8):2213-2231.
3 黄毅,刘辉,项昌乐,等. 车辆传动系统非线性平移扭转耦合振动响应灵敏度研究[J].振动与冲击,2014,33(23):92-99.
Huang Yi, Liu Hui, Xiang Chang-le, et al. Response sensitivity of nonlinear translation-torsional vibration coupled model of a vehicle transmission system[J]. Journal of Vibration and Shock, 2014,33(23):92-99.
4 袁旺,田子龙,杨志坚,等. 乘用车加速工况动力传动系扭振分析与改进[J]. 汽车工程,2018,40(1):91-97, 113.
Yuan Wang, Tian Zi-long, Yang Zhi-jian, et al. Analysis and improvement of the torsional vibration of car powertrain under acceleration condition[J]. Automotive Engineering, 2018,40(1):91-97, 113.
5 金红光. 纯电动汽车两挡自动变速器箱体动态特性研究[D]. 长沙:湖南大学机械与运载工程学院,2015.
Jin Hong-guang. Dynamic characteristics research of a two-speed automatic transmission housing for pure electric vehicle[D]. Changsha: College of Mechanical and Vehicle Engineering, Hunan University,2015.
6 Yang Y,Li H,Dai Y P. Nonlinear vibration characteristics of spur gear system subjected to multiple harmonic excitations[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(17):6026-6050.
7 Yang Y,Cao L Y,Li H,et al. Nonlinear dynamic response of a spur gear pair based on the modeling of periodic mesh stiffness and static transmission error[J]. Applied Mathematical Modelling,2019,72:444-469.
8 程功,肖科,王家序,等. 混合润滑状态下齿轮接触刚度[J]. 吉林大学学报:工学版,2020,50(2):494-503.
Cheng Gong, Xiao Ke, Wang Jia-xu, et al. Gear contact stiffness under mixed lubrication status[J]. Journal of Jilin University (Engineering and Technology Edition),2020,50(2):494-503.
9 林腾蛟,郭松龄,赵子瑞,等.裂纹故障对斜齿轮时变啮合刚度及振动响应的影响分析[J].振动与冲击,2019,38(16):29-36, 63.
Lin Teng-jiao, Guo Song-ling, Zhao Zi-rui, et al. Influence of crack faults on time-varying mesh stiffness and vibration response of helical gears[J]. Journal of Vibration and Shock, 2019,38(16):29-36, 63.
10 Mo W,Jiao Y,Chen Z. Dynamic analysis of helical gears with sliding friction and gear errors[J]. IEEE Access,2018,6:60467-60477.
11 Yi Y, Huang K, Xiong Y S,et al. Nonlinear dynamic modelling and analysis for a spur gear system with time-varying pressure angle and gear backlash[J]. Mechanical Systems and Signal Processing,2019,132(1):18-34.
12 Geng Z,Xiao K,Wang J,et al. Investigation on nonlinear-dynamic characteristics of a new rigid-flexible gear transmission with wear[J]. Journal of Vibration and Acoustics,2019,141(5):051008.
13 Fang Y,Liang X,Zuo M J. Effects of friction and stochastic load on transient characteristics of a spur gear pair[J]. Nonlinear Dynamics,2018,93(2):599-609.
14 隋立起,田丰,李波,等. 考虑齿轮耦合振动的换挡过程非线性动力学分析[J]. 清华大学学报:自然科学版,2020,60(2):109-116.
Li-qi Sui, Tian Feng, Li Bo, et al. Nonlinear dynamics analyses of gear shifting with gear vibrations[J]. Journal of Tsinghua University(Science and Technology),2020,60(2):109-116.
15 马辉,王奇斌,黄婧,等. 不同自由度耦合斜齿轮转子系统的振动特性[J].振动·测试与诊断,2014,34(4):650-657, 775.
Ma Hui, Wang Qi-bin, Huang Jing, et al. Vibration characteristics analysis of a helical gear rotor system considering different degrees of freedom coupling[J]. Journal of Vibration, Measurement & Diagnosis, 2014,34(4):650-657, 775.
16 张义民,何永慧,朱丽莎,等. 多平行轴齿轮耦合转子系统的振动响应[J]. 振动、测试与诊断,2012,32(4):527-531, 684.
Zhang Yi-min, He Yong-hui, Zhu Li-sha, et al. Vibration response of multi-shaft rotor system with coupled gear mesh[J]. Journal of Vibration, Measurement & Diagnosis, 2012,32(4):527-531, 684.
17 Wang J G, Zhang J,Yuan Z, et al. Nonlinear characteristics of a multi-degree-of-freedom spur gear system with bending-torsional coupling vibration[J]. Mechanical Systems and Signal Processing,2019,121:810-827.
18 符升平,项昌乐,姚寿文, 等. 基于刚柔耦合动力学的齿轮传动系统动态特性[J]. 吉林大学学报:工学版, 2011, 41(2): 382-386.
Fu Sheng-ping, Xiang Chang-le, Yao Shou-wen, et al. Dynamic characteristic of gear transmission system based on rigid and flexible coupled dynamics[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(2):382-386.
19 程潇骁. 电机变速器耦合系统换挡过程动力学建模与控制策略研究[D]. 北京:清华大学汽车工程系,2014.
Cheng Xiao-xiao. Dynamics modeling and control strategy for the shifting process of coupled motor-transmission system[D]. Beijing: Department of Automotive Engineering, Tsinghua University, 2014.
20 隋平阳. 电动车辆齿轮传动系统非线性动力学特性研究[D]. 北京:北京理工大学机械与车辆学院,2016.
Ping-yang Sui. Study on nonlinear dynamic characteristics of gear system for electric vehicle's transmission[D]. Beijing:School of Mechanical Engineering, Beijing Institute of Technology,2016.
21 Song Q, Sui P Y. Nonlinear dynamics coupling analysis on gear system of automated mechanical transmission[C]∥The 3rd International Conference on Material Engineering and Application, Shanghai, China, 2016:518-523.
22 柴本本. 电驱动两挡机械式自动变速器换挡过程控制研究[D]. 上海:上海交通大学机械与动力工程学院,2019.
Chai Ben-ben. Study on shifting process control for two-speed automatic mechanical transmissions on electric vehicles[D]. Shanghai:School of Mechanical Engineering,Shanghai Jiao Tong University, 2019.
[1] Da-feng SONG,Li-li YANG,Xiao-hua ZENG,Xing-qi WANG,Wei-zhi LIANG,Nan-nan YANG. Battery life optimization of hybrid electric vehicle based on driving cycle construction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 781-791.
[2] Jia-xu ZHANG,Xin-zhi WANG,Jian ZHAO,Zheng-tang SHI. Path planning and discrete sliding mode tracking control for high⁃speed lane changing collision avoidance of vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1081-1090.
[3] Ren HE,Xiao-cong ZHAO,Yi-bin YANG,Jian-qiang WANG. Man⁃machine shared driving model using risk⁃response mechanism of human driver [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 799-809.
[4] Bo WANG,Yang-yang HE,Bing-bing NIE,Shu-cai XU,Jin-huan ZHANG. Abdominal injury of vehicle occupant in underbody blast events [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 792-798.
[5] Shou-tao LI,Rui WANG,Jing-chun XU,De-jun WANG,Yan-tao TIAN,Ding-li YU. A vehicle collision avoidance control method based on model predictive composite control [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 738-746.
[6] Wei-da WANG,Yan-jie WU,Jia-lei SHI,Liang LI. Electronic hydraulic brake power system control strategy based on driver intention recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 406-413.
[7] Guo-ying CHEN,Jun YAO,Peng WANG,Qi-kun XIA. Stability control strategy for rear in⁃wheel motor drive vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 397-405.
[8] Fang-wu MA,Hong-yu LIANG,Qiang WANG,Yong-feng PU. In-plane dynamic crushing of dual-material structure with negative Poisson′s ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 114-121.
[9] Dao WU,Li-bin ZHANG,Yun-xiang ZHANG,Hong-ying SHAN,Hong-mei SHAN. Visual detection method for vehicle braking time sequence based on slip rate identification [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 206-216.
[10] En-hui ZHANG,Ren HE,Wei-dong SU. Numerical analysis of oil liquid sloshing characteristics in fuel tank with different baffle structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 83-95.
[11] Lu XIONG,Yan-chao WEI,Le-tian GAO. Inertial measurement unit/wheel speed sensor integrated zero-speed detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 134-138.
[12] Ji-qing CHEN,Qing-sheng LAN,Feng-chong LAN,Zhao-lin LIU. Trajectory tracking control based on tire force prediction and fitting [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1565-1573.
[13] Zhi-gang YANG,Ya-jun FAN,Chao XIA,Shi-jun CHU,Xi-zhuang SHAN. Drag reduction of a square⁃back Ahmed model based on bi⁃stable wake [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1635-1644.
[14] Zhe SHEN,Yi-gang WANG,Zhi-gang YANG,Yin-zhi HE. Drift error correction of unknown sound source in wind tunnel using approximation method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1584-1589.
[15] Zhao LIU,Jiang-lin CHENG,Yu-tian ZHU,Li-hui ZHENG. Vertical vibration modeling and motion correlation analysis of rail vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1600-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!