Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1387-1395.doi: 10.13229/j.cnki.jdxbgxb20200358

Previous Articles    

Korean text structure discovery based on reinforcement learning and attention mechanism

Ya-hui ZHAO(),Fei-yang YANG,Zhen-guo ZHANG(),Rong-yi CUI   

  1. Deptartment of Computer Science & Technology,Yanbian University,Yanji 133002,China
  • Received:2020-05-22 Online:2021-07-01 Published:2021-07-14
  • Contact: Zhen-guo ZHANG E-mail:yhzhao@ybu.edu.cn;zgzhang@ybu.edu.cn

Abstract:

In this paper, attention mechanism is combined with deep reinforcement learning, and label information is used to study how to learn effective Korean language text structured representation independently. Two structured representation models are proposed, which are called Information Distilled Attention (IDA) and Hierarchically Structured Attention (HSA). IDA selects the important words related to the task, and HSA finds the phrase structure in the sentence. The structural discovery in both presentation models is a sequential decision problem that can be implemented using Policy Gradient (PG) in reinforcement learning. The experimental results show that the proposed IDA can recognize the important words of Korean, and HSA can extract the sentence structure well, and have good performance in the task of text classification. At the same time, the results of the two models have a good auxiliary effect on corpus tagging.

Key words: artificial intelligence, deep reinforcement learning, attention mechanism, text structure discovery, Korean natural language processing

CLC Number: 

  • TP391.1

Fig.1

Soft attention"

Fig.2

Network model structure diagram based on reinforcement learning"

Fig.3

ID-Attention model"

Fig.4

HS-Attention model"

Table 1

Details of Korean text dataset"

类别词条数类别词条数
动物4582植物6172
微生物5472生物技术1215
生物医学2752气候708
海洋环境810地质1735
海洋技术819材料工程781
测控技术1728航天4436
其他1478

Fig.5

Training process of ID-Attention and HS-Attention"

Fig.6

Changes in HS-Attention loss function value"

Table 2

Accuracy under different classifiers models"

模型准确率/%模型准确率/%
CNN78.50Self?Attention82.91
LSTM74.60ID?LSTM82.11
Bi?LSTM78.14HS?LSTM83.65
MT76.50ID?Attention84.84
T?BLSTM?CNN81.68HS?Attention85.11

Table 3

Examples of structures distilled and discovered by ID-Attention and HS-Attention"

原始文本??? ?? ??? ??? ?? ?? ?? ??? ?? ?? ?? ???? ?? ??? ?? ? ??? ?? ???? ??? ??? ??? ??(城市是受人类活动影响最大的地球表面,城市系统的碳循环在世界及地区的碳循环中具有重要的位置和作用。)
ID?Attention??? ?????????????? ??? ?? ?? ?? ???? ?? ?????????????????? ??? ?????
HS?Attention??? | ?? ??? ??? ?? ?? ?? | ??? ?? ?? | ?? ???? ?? ??? ?? ? ??? ?? ???? | ??? ??? ??? ?? |
原始文本?? ????? ?? ??? ???? ?? ? ????? ?? ?? ???? ???? ??? ??? ?? ??? ? ??(从昆虫病原直接取样,检出及定量化可直接反映昆虫流行病学调查中病原丰度)
ID?Attention?? ?????????? ???? ???????????? ??????????? ???????????
HS?Attention?? ????? | ?? ??? ???? ?? ? ????? | ?? ?? ???? ???? ??? | ??? ?? ??? ? ?? |
原始文本???? ?? ???? ? ?? ?? ??? ???? ????? ?? ?? ???? ???? ?? ?? ?? ?? ???? ???? ?? ??? ????? ??? ??(温室气体排放清单是目前计算城市碳排放量最常用的机理,并有助于在不同的产业或领域研究温室气体排放现状)
ID?Attention?????????? ????? ??? ???? ????????????????????????? ???? ???? ?????????? ??? ??
HS?Attention???? ?? ???? ? | ?? ?? ??? ???? | ????? ?? ?? ???? ???? | ?? ?? ?? ?? ???? | ???? ?? ??? ????? | ??? ??
1 Bengio Y, Courville A,Vincent P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828.
2 Socher R, Pennington J, Huang E H. Semi-supervised recursive auto encoders for predicting sentiment distributions[C]∥The Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 2011, 151-161.
3 毕玉德.朝鲜语自然语言处理研究管窥[J].中文信息学报, 2011,25(6):166-169, 182.
Bi Yu-de. A research on Korean natural language processing[J]. Journal of Chinese Information Processing, 2011,25 (6): 166-169, 182.
4 Joulin A, Grave E, Bojanowski P. Bag of tricks for efficient text classification[C]∥The European Chapter of the ACL, Valencia, Spain, 2017:427-431.
5 Kim Y. Convolutional neural networks for sentence classification[C]∥The Conference on Empirical Methods in Natural Language Processing, Doha, Qatar,2014:1746-1751.
6 Zhu X, Sobihani P, Guo H. Long short-term memory over recursive structures[C]∥International Conference on Machine Learning, Miami, Florida, USA,2015:1604-1612.
7 Yang Z, Yang D, Dyer C. Hierarchical attention networks for document classification[C]∥Annual Conference of the North American Chapter of the Association for Computational Linguistics, San Diego,USA,2016:1480-1489.
8 Yogatama D, Blunsom P, Dyer C. Learning to compose words into sentences with reinforcement learning[C]∥ International Conference on Learning Representations,Toulon, France, 2017.
9 Chung J, Gulcehre C, Cho K. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]∥NIPS, Montreal, Canada, 2014.
10 Zhang Tian-yang, Huang Min-lie, Zhao Li. Learning structured representation for text classification via reinforcement learning[C]∥The Association for the Advance of Artificial Intelligence, New Orleans,USA, 2018:6053-6060.
11 Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992,2(3/4):229-256.
12 Keneshloo Y, Ramakrishnan N, Reddy C K. Deep transfer reinforcement learning for text summarization[J]. Society for Industrial and Applied Mathematics, 2019, arxiv:.
13 Sutton R S, McAllester D A, Singh S P. Policy gradient methods for reinforcement learning with function approximation[C]∥NIPS, Denver, USA,2000:1057-1063.
14 Graves A, Schmidhuber Jürgen. Frame wise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6):602-610.
15 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]∥ International Conference on Machine Learning, Florida, USA,2015, arXiv:.
16 Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification[C]∥ Proceedings of the Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015:1422-1432.
17 Chung J, Ahn S, Bengio Y. Hierarchical multiscale recurrent neural networks[C]∥International Conference on Learning Representations, Toulon, France, 2017.
18 Pennington J, Socher R, Manning C D. Glove:Global vectors for word representation[C]∥Proceedings of the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014:1532-1543.
19 Kingma D, Ba J. Adam: a method for stochastic optimization[C]∥International Conference on Learning Representations, Sandiego,USA,2015.
20 Mingjie T, Yahui Z, Rongyi C. Identifying word translations in scientific literature based on labeled bilingual topic model and co-occurrence features[C]∥The 17th China National Conference on Computational Linguistics, Changsha, China, 2018:79-92.
21 孟先艳,崔荣一,赵亚慧,等.基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法[J].计算机应用研究, 2020,37(9):2669-2673.
Meng Xian-yan, Cui Rong-yi, Zhao Ya-hui, et al. Multilingual text classification method based on bidirectional long-short memory unit and convolutional neural network[J]. Computer Application Research, 2020,37(9):2669-2673.
22 Vaswani A,Shazeer N, Parmar N. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017:5999-6009.
23 Lin Z, Feng M, Santos C N. A structured self-attentive sentence embedding[C]∥International Conference on Learning Representations, Toulon, France,2017.
[1] Yuan-ning LIU,Di WU,Xiao-dong ZHU,Qi-xian ZHANG,Shuang-shuang LI,Shu-jun GUO,Chao WANG. User interface components detection algorithm based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1026-1033.
[2] Fu-hua SHANG,Mao-jun CAO,Cai-zhi WANG. Local outlier data mining based on artificial intelligence technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 692-696.
[3] Hai-ying ZHAO,Wei ZHOU,Xiao-gang HOU,Xiao-li ZHANG. Double-layer annotation of traditional costume images based on multi-task learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 293-302.
[4] Hong-wei ZHAO,Xiao-han LIU,Yuan ZHANG,Li-li FAN,Man-li LONG,Xue-bai ZANG. Clothing classification algorithm based on landmark attention and channel attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1765-1770.
[5] Dan-tong OUYANG,Cong MA,Jing-pei LEI,Sha-sha FENG. Knowledge graph embedding with adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 685-691.
[6] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[7] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[8] Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300.
[9] Shun YANG,Yuan⁃de JIANG,Jian WU,Hai⁃zhen LIU. Autonomous driving policy learning based on deep reinforcement learning and multi⁃type sensor data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1026-1033.
[10] Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919.
[11] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[12] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[13] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[14] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[15] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!