Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2514-2522.doi: 10.13229/j.cnki.jdxbgxb20210355
Fei CHEN1(),Zheng YANG2,Zhi-cheng ZHANG2,Wei LUO2()
CLC Number:
1 | Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems & Signal Processing, 2018, 108: 33-47. |
2 | 黄海松, 魏建安, 任竹鹏, 等. 基于失衡样本特性过采样算法与SVM的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39(10): 65-74, 132. |
Huang Hai-song, Wei Jian-an, Ren Zhu-peng, et al. Rolling bearing fault diagnosis based on imbalanced sample characteristics oversampling algorithm and SVM[J]. Journal of Vibration and Shock, 2020, 39(10): 65-74, 132. | |
3 | 何雷, 刘溯奇, 蒋婷, 等. 基于改进LMD与BP神经网络的变速箱故障诊断[J]. 机械传动, 2020, 44(1): 171-176. |
He Lei, Liu Su-qi, Jiang Ting, et al. Gearbox fault diagnosis based on improved LMD and BP neural network[J]. Journal of Mechanical Transmission, 2020, 44(1): 171-176. | |
4 | Gilles J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. |
5 | Yu J, Hua Z, Li Z. A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator[J]. Chaos, Solitons & Fractals, 2016, 89: 8-19. |
6 | 何洋洋, 王馨怡, 董晶. 基于经验小波变换与谱峭度的船舶轴系故障特征提取方法[J]. 中国舰船研究, 2020, 15(): 98-106. |
He Yang-yang, Wang Xin-yi, Dong Jing. Fault feature extraction method for marine shafting based on empirical wavelet transform-spectral kurtosis[J]. Chinese Journal of Ship Research, 2020, 15(Sup.1): 98-106. | |
7 | 叶益丰. 基于MEWT-KPCA的电主轴故障诊断技术研究[D]. 长春: 吉林大学机械与航空航天工程学院, 2018. |
Ye Yi-feng. Fault diagnosis technology of motorized spindle based on MEWT-KPCA[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2018. | |
8 | 叶柯华, 李春, 胡璇. 基于经验小波变换和关联维数的风力机齿轮箱故障诊断[J]. 动力工程学报, 2021, 41(2): 113-120. |
Ye Ke-hua, Li Chun, Hu Xuan. Fault diagnosis of a wind turbine gearbox based on empirical wavelet transform and correlation dimension[J]. Journal of Chinese Society of Power Engineering, 2021, 41(2): 113-120. | |
9 | 赵若妤, 马宏忠, 魏旭, 等. 基于EWT及多尺度形态谱的高压并联电抗器故障诊断研究[J]. 电力系统保护与控制, 2020, 48(17): 68-75. |
Zhao Ruo-yu, Ma Hong-zhong, Wei Xu, et al. Research on fault diagnosis of a high voltage shunt reactor based on EWT and multiscale spectral spectrum[J]. Power System Protection and Control, 2020, 48(17): 68-75. | |
10 | 乔志城, 刘永强, 廖英英. 改进经验小波变换与最小熵解卷积在铁路轴承故障诊断中的应用[J]. 振动与冲击, 2021, 40(2): 81-90, 118. |
Qiao Zhi-cheng, Liu Yong-qiang, Liao Ying-ying. Application of improved wavelet transform and minimum entropy deconvolution in railway bearing fault diagnosis[J]. Journal of Vibration and Shock, 2021, 40(2): 81-90, 118. | |
11 | 常勇, 包广清, 程思凯, 等. 基于VMD和KFCM的轴承故障诊断方法优化与研究[J]. 西南大学学报: 自然科学版, 2020, 42(10): 146-155. |
Chang Yong, Bao Guang-qing, Cheng Si-kai, et al. Optimization and research of a bearing fault diagnosis method based on VMD and KFCM[J]. Journal of Southwest University(Natural Science Edition),2020, 42(10): 146-155. | |
12 | 林越, 刘廷章, 唐侃. 基于自适应模糊聚类与核主元分析混合模型的变压器异常检测[J]. 科技通报, 2020, 36(9): 56-60. |
Lin Yue, Liu Ting-zhang, Tang Kan. Anomaly detection of power transformer based on KFCM-KPCA hybrid model[J]. Bulletin of Science and Technology, 2020, 36(9): 56-60. | |
13 | 贺湘宇, 何清华. 基于有源自回归模型与模糊C-均值聚类的挖掘机液压系统故障诊断[J]. 吉林大学学报: 工学版, 2008, 38(1): 183-187. |
He Xiang-yu, He Qing-hua. Fault diagnosis for excavator hydraulic system based on auto-regressive with extra inputs model and fuzzy C-means clustering[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(1): 183-187. | |
14 | 王庆锋, 刘家赫, 卫炳坤, 等. 数据驱动的聚类分析故障识别方法研究[J]. 机械工程学报, 2020, 56(18): 7-14. |
Wang Qing-feng, Liu Jia-he, Wei Bing-kun, et al. Research on data-driven clustering analysis fault identification method[J]. Journal of Mechanical Engineering, 2020, 56(18): 7-14. | |
15 | 院老虎, 连冬杉, 张亮, 等. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报: 工学版, 2021, 51(5): 1635-1641. |
Yuan Lao-hu, Lian Dong-shan, Zhang Liang, et al. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641. | |
16 | 徐忠兰. 基于SOM神经网络的煤矿用防爆柴油机故障诊断[J]. 煤矿机械, 2021, 42(4): 175-177. |
Xu Zhong-lan. Fault diagnosis of mine explosion-proof diesel engine based on SOM neural network[J]. Coal Mine Machinery, 2021, 42(4): 175-177. | |
17 | Lindeberg T. Scale-Space Theory in Computer Vision[M]. Berlin: Springer, 1994. |
18 | Gilles J, Heal K. A parameterless scale-space approach to find meaningful modes in Histograms-application to image and spectrum segmentation[J]. International Journal of Wavelets Multiresolution & Information Processing, 2014, 12(6): 1450044. |
19 | 蔡艳平, 李艾华, 王涛, 等. 基于EMD-Wigner-Ville的内燃机振动时频分析[J]. 振动工程学报, 2010, 23(4): 430-437. |
Cai Yan-ping, Li Ai-hua, Wang Tao, et al. I.C. engine vibration time-frequency analysis based on EMD-Wigner-Ville[J]. Journal of Vibration Engineering, 2010, 23(4): 430-437. | |
20 | He X, Cai D, Niyogi P. Laplacian score for feature selection[C]∥Advances in Neural Information Processing Systems 18, Vancouver, British Columbia, Canada, 2005: 507-514. |
21 | 欧璐, 于德介. 基于拉普拉斯分值和模糊C均值聚类的滚动轴承故障诊断[J]. 中国机械工程, 2014, 25(10): 1352-1357. |
Lu Ou, Yu De-jie. Rolling bearing fault diagnosis based on laplacian score and fuzzy C-means clustering[J]. China Mechanical Engineering, 2014, 25(10): 1352-1357. | |
22 | Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(8): 1226-1238. |
23 | Breunig M M, Kriegel H P, Ng R T, et al. LOF: identifying density-based local outliers[C]∥ACM Sigmod International Conference on Management of Data, Dallas, United States, 2000: 93-104. |
24 | 朱庆生,唐汇,冯骥.一种基于自然最近邻的离群检测算法[J]. 计算机科学, 2014, 41(3): 282-284, 311. |
Zhu Qing-sheng, Tang Hui, Feng Ji. Outlier detection algorithm based on natural nearest neighbor[J]. Computer Science, 2014, 41(3): 282-284, 311. | |
25 | Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]∥International Conference on Knowledge Discovery and Data Mining, Orlando, USA, 1996: 226-231. |
26 | 王光, 林国宇. 改进的自适应参数DBSCAN聚类算法[J]. 计算机工程与应用, 2020, 56(14): 45-51. |
Wang Guang, Lin Guo-yu. Improved adaptive parameter DBSCAN clustering algorithm[J]. Computer Engineering and Applications, 2020, 56(14): 45-51. | |
27 | Bezdek J C, Ehrlich R, Full W. FCM: the fuzzy C-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2): 191-203. |
28 | Wang W, Zhang Y. On fuzzy cluster validity indices[J]. Fuzzy Sets & Systems, 2007, 158(19): 2095-2117. |
[1] | Zhen SONG,Jie LIU. Time series prediction algorithm of vibration frequency of rotating machinery [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1764-1769. |
[2] | Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496. |
[3] | Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328. |
[4] | Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295. |
[5] | Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399. |
[6] | Fei-yue DENG, LYUHao-yang,Xiao-hui GU,Ru-jiang HAO. Fault diagnosis of high⁃speed train axle bearing based on a lightweight neural network Shuffle⁃SENet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482. |
[7] | Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376. |
[8] | Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309. |
[9] | Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153. |
[10] | Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641. |
[11] | Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096. |
[12] | Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025. |
[13] | Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441. |
[14] | Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626. |
[15] | WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555. |
|