Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 430-438.doi: 10.13229/j.cnki.jdxbgxb20210720

Previous Articles     Next Articles

Short⁃term passenger flow forecasting of urban rail transit based on recurrent neural network

Hui-zhen ZHANG1(),Zheng-kai GAO1,2,Jian-qiang LI2,Chen-xi WANG1,Yu-biao PAN1,3,Cheng WANG1,Jing WANG1   

  1. 1.School of Computer Science and Technology,Huaqiao University,Xiamen 361021,China
    2.School of Software Engineering,Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China
    3.Linewell Software Co. ,Ltd. ,Quanzhou 362000,China
  • Received:2021-07-30 Online:2023-02-01 Published:2023-02-28

Abstract:

In order to better predict the short-term passenger flow of urban rail transit, a prediction method based on the recurrent neural network model is proposed. Firstly, based on the actual passenger flow data of each rail transit station, the Pearson correlation coefficient is used to determine the influencing factors of short-term passenger flow of rail transit, such as the weather conditions, historical passenger flow, whether it is a peak time period, whether it is a working day, etc. Secondly, the K-means clustering algorithm is used to classify rail transit stations into three types: high, medium, and low passenger flow stations. Then the distribution of passenger flow for each station type in time and space is analyzed, to determine the peak period of passenger flow for each station type. Finally, two urban rail transit short-term passenger flow prediction methods based on long-short term memory neural network(LSTM) and gated recurrent unit(GRU) respectively are proposed to predict the passenger flow of each type of station in different time period. The experimental results show that 5 min is the best time granularity for short-term passenger flow prediction of the two models. In this time granularity, the overall performance of the GRU model is better than the LSTM model.

Key words: engineering of communication and transportation, urban rail traffic, short-term passenger flow forecast, recurrent neural network, long-short term memory neural network, gated recurrent unit

CLC Number: 

  • U121

Table 1

Pearson correlation coefficient between passenger flow and its influencing factors"

相关影响因素Pearson相关 系数显著性 (双尾)
[-45,-30)min客流量0.880*0.000
[-30,-15)min客流量0.930*0.000
[-15,0)min客流量0.960*0.000
温度0.304*0.000
湿度-0.176*0.000
能见度0.053*0.004
降水量-0.093*0.000
云量0.420*0.000

Fig.1

Analysis of passenger flow impact in different periods"

Table 2

Influencing factors of short term passenger flow in urban rail transit"

变量说 明
x1温度/°C
x2湿度/%
x3能见度/km
x4降水量/mm
x6前一时段客流量/人次
x7是否工作日(1表示非工作日、0表示工作日)
x8

是否高峰时段(1表示高峰时段、

0表示平峰时段、-1表示停运时段)

Table 3

Results by cluster analysis for stations of Xiamen rail transit line 1"

类别站点数站点名日均客流量/人次
高客流量2镇海路、乌石浦≥20 000
中客流量12

中山公园、将军祠、文灶、

湖滨东路、莲坂、莲花路口、

吕厝、塘边、火炬园、集美学

村、园博苑、厦门北站

7500~20 000
低客流量10

殿前、高崎、杏林村、杏锦路、

官任、诚毅广场、集美软件

园、集美大道、天水路、岩内

<7500

Fig.2

Time distribution of passenger flow between weekdays and non-weekdays at different stations"

Fig.3

Structure of SPFF"

Table 4

Training time of SPFF with LSTM or GRU"

时间 粒度 /minLSTM/GRU模型训练时间/s
时间步长1时间步长3时间步长6
单轮时间总时间单轮时间总时间单轮时间总时间
50.8/0.7

629/

583

2.6/2.3

2047/

1842

6.2/5.7

4934/

4603

100.4/0.3

323/

283

1.0/0.9

834/

758

2.7/2.6

2173/

2085

150.3/0.2

259/

228

0.5/0.5

435/

393

1.6/1.6

1293/

1278

Fig.4

Forecast results of different stations"

Table 5

Comparative analysis of model prediction results"

站点模型时间粒度 /min时间步长
136
RMSEMAERMSEMAERMSEMAE
镇海路LSTM538.224.835.223.634.723.0
1056.338.662.443.964.444.8
1579.656.574.251.981.958.3
GRU538.525.834.223.233.822.6
1056.240.354.438.551.236.1
1578.355.375.353.576.555.1
乌石浦LSTM524.416.423.516.023.415.9
1041.628.341.028.339.527.5
1558.840.357.340.128.141.9
GRU524.416.522.915.622.315.1
1040.728.239.927.038.526.3
1560.742.454.736.855.237.9
吕厝LSTM519.113.217.512.319.713.2
1026.919.029.320.031.121.1
1540.027.538.927.938.126.3
GRU519.914.217.412.217.111.7
1028.019.728.219.831.022.0
1543.631.939.328.339.329.0
集美学村LSTM518.612.515.710.916.511.8
1023.816.123.615.929.419.7
1534.122.534.02336.224.3
GRU518.412.416.411.615.610.5
1023.415.724.015.922.114.7
1534.022.934.323.832.721.7
官任LSTM511.97.011.37.312.78.8
1019.612.619.913.418.112.1
1528.818.528.118.624.515.2
GRU512.28.111.27.211.77.9
1020.013.219.112.418.012.1
1530.120.727.218.224.415.5
集美大道LSTM57.556.64.46.64.5
1011.17.110.66.810.77
1515.810.415.410.314.19.1
GRU57.55.06.64.36.84.6
1011.67.810.66.910.57.2
1515.610.416.010.914.69.5
1 中国城市轨道交通协会. 城市轨道交通2020年度统计和分析报告[J]. 隧道建设(中英文), 2021, 41(4): 691.
China Association of Metros. Statistics and analysis Report of urban rail transit in 2020[J]. Tunnel Construction(English and Chinese), 2021, 41(4): 691.
2 Schimbinschi F, Moreira-Matias L, Nguyen V X, et al. Topology-regularized universal vector autoregression for traffic forecasting in large urban areas[J]. Expert Systems with Applications, 2017, 82: 301-316.
3 Guo J H, Huang W, Williams B M. Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C, 2014, 43(2): 50-64.
4 张淑玉. 基于贝叶斯理论的铁路短期客流预测方法研究[D]. 北京: 北京交通大学交通运输学院, 2018.
Zhang Shu-yu. Research on forecasting method of short term passenger flow based on Bayesian theory[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2018.
5 孟品超,李学源,贾洪飞,等.基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报:工学版, 2018, 48(2): 448-453.
Meng Pin-chao, Li Xue-yuan, Jia Hong-fei, et al. Short-time rail transit passenger flow real-time prediction based on moving average[J]. Journal of Jilin University(Engineering ang Technology Edition), 2018, 48(2): 448-453.
6 Zhang Y R, Zhang Y L, Haghani A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 65-78.
7 刁文君. 基于灰色模型的城市轨道交通客流预测研究[D]. 天津: 天津大学管理与经济学部, 2016.
Diao Wen-jun. Study on the forecast of urban rail transit passenger flow based on Grey Model[D]. Tianjin: College of Management and Economy, Tianjin University, 2016.
8 杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J]. 吉林大学学报:工学版, 2006, 36(6): 881-884.
Yang Zhao-sheng, Wang Yuan, Guan Qing. Short-term traffic flow prediction method based on SVM[J]. Journal of Jilin University(Engineering ang Technology Edition), 2006, 36(6): 881-884.
9 姚智胜,邵春福,熊志华,等.基于主成分分析和支持向量机的道路网短时交通流量预测[J]. 吉林大学学报:工学版, 2008, 38(1): 48-52.
Yao Zhi-sheng, Shao Chun-fu, Xiong Zhi-hua,et al. Short-term traffic volumes forecasting of road network based on principal component analysis and support vector machine[J]. Journal of Jilin University (Engineering ang Technology Edition), 2008, 38(1): 48-52.
10 陈健冲. 基于改进卡尔曼滤波算法的短时公交客流预测模型研究[D]. 大连: 大连海事大学信息科学技术学院, 2020.
Chen Jian-chong. Research on short-term bus passeng based on improved Kalman flow prediction model filter algorithm[D]. Dalian: College of Information Science and Technology, Dalian Maritime University, 2020.
11 Bai Y, Sun Z Z, Zeng B, et al. A multi-pattern deep fusion model for short-term bus passenger flow forecasting[J]. Applied Soft Computing, 2017, 58: 669-680.
12 Glisovic N, Milenkovic M, Bojovic N, et al. A hybrid model for forecasting the volume of passenger flows on Serbian railways[J]. Operational Research, 2016, 16(2): 271-285.
13 田壮壮. 城市轨道交通延伸线的进出站客流预测[D]. 南昌: 华东交通大学电气与自动化工程学院, 2019.
Tian Zhuang-zhuang. Forecasting passenger flow of inbound and outbound for urban rail transit extension line[D].Nanchang: School of Electrical and Automation Engineering, East China Jiantong University,2019.
14 王秋雯, 陈彦如, 刘媛春. 基于卷积长短时记忆神经网络的城市轨道交通短时客流预测[J/OL]. [2020-09-02]. / 10.13195/j.kzyjc.2020.0501
doi: 10.13195/j.kzyjc.2020.0501
15 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204.
Zhao Yang-yang, Xia Liang, Jiang Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204.
16 Tsai T H, Lee C K, Wei C H.Neural network based temporal feature models for short-term railway passenger demand forecasting[J]. Expert Systems with Applications, 2009, 36(2): 3728-3736.
17 Pearson K. Notes on the history of correlation[J]. Biometrika, 1920, 13(1): 25-45.
18 徐威,郑长江,马庚华,等.基于k-means聚类的城市轨道交通站点分类研究[J].贵州大学学报:自然科学版, 2018, 35(6): 106-111.
Xu Wei, Zheng Chang-jiang, Ma Geng-hua, et al. Classification of urban rail transit stations based on k-means clustering[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(6): 106-111.
19 Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C] ∥EMNLP, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, 2014: 1724-1734.
20 李梅. 基于深度学习的短时公交客流预测研究[D]. 北京: 北京交通大学经济管理学院, 2019.
Li Mei. Research on short-time bus passenger flows forecasting based on deep learning[D]. Beijing: School of Economics and Management, Beijing Jiaotong University, 2019.
21 王挺. 城市轨道交通短时客流预测时间粒度选择[D]. 北京: 北京交通大学土木建筑工程学院, 2018.
Wang Ting. Selecting time granularity of short-term passenger flow forecast in urban rail transit[D]. Beijing: School of Civil Engineering, Beijing Jiaotong University, 2018.
[1] Xian-min SONG,Shu-tian YANG,Ming-xin LIU,Zhi-hui LI. Fluctuation characteristics and prediction method of bus travel time between stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1792-1799.
[2] Wen-jing WU,Yong-bin ZHAN,Li-li YANG,Run-chao CHEN. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[3] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
[4] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[5] Tian-jun FENG,Xue-lu SUN,Jia-sheng HUANG,Xiu-juan TIAN,Xian-min SONG. Two-phase signal intersection delay based on three crossing modes [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 550-556.
[6] Xing-hua LI,Fei-yu FENG,Cheng CHENG,Wei WANG,Peng-cheng TANG. Choice preference analysis and modeling of ridesplitting service [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 578-584.
[7] Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563.
[8] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[9] Yi-ran WANG,Jing-xu CHEN,Yue-ping WANG,Jin-biao HUO,Zhi-yuan LIU. Instant demand⁃responsive scheme for customized bus considering service fairness [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2574-2581.
[10] Xiao-ying PAN,De WEI,Yi-zhe ZHAO. Detecetion of lung nodule based on mask R-CNN and contextual convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2419-2427.
[11] Yan-feng JIA,Da-yi QU,Lu LIN,Rong-han YAO,Xiao-long MA. Coordinated speed control of connected mixed traffic flow based on trajectory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2051-2060.
[12] Chang-fu ZONG,Long WEN,Lei HE. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113.
[13] Liang JIANG,Yi HE. Risky driving behavior and influencing factors analysis for electric two⁃wheeler [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1107-1113.
[14] Xiao⁃qin LUO,Dian⁃hai WANG,Sheng JIN. Traffic signal actuated control at isolated intersections for heterogeneous traffic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 695-704.
[15] Zhi⁃hui LI,Tao ZHONG,Yong⁃hua ZHAO,Yong⁃li HU,Hai⁃tao LI,Jing⁃wei ZHAO. Pedestrian tracking algorithm for autonomous driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 680-687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .