Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (4): 1133-1138.doi: 10.13229/j.cnki.jdxbgxb.20210206

Previous Articles    

Influence for backheating on low temperature high mass experimental system

Zhen-jun XU1(),Rui-feng ZHANG1,2,Jia-xiang CHEN2,Xiao-hui ZHANG3,Xiao-guang MI3,Jie CHEN3,Lin CHEN2,4()   

  1. 1.College of Civil Engineering & Architecture,Qingdao Agricultural University,Qingdao 266109,China
    2.Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
    3.R&D Center,CNOOC Gas & Power Group,Beijing 100028,China
    4.School of Aeronautics and Astronautics,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-03-16 Online:2023-04-01 Published:2023-04-20
  • Contact: Lin CHEN E-mail:xuzhenjun@qau.edu.cn;chenlin2018@iet.cn

Abstract:

In this paper, the experimental system for high mass flow density flow and heat transfer characteristics with heat back was designed and built with the wound tube heat exchanger as the test piece. The experimental system includes main test cycle circuit, cooling circuit, control system and safety ventilation system. The experimental conditions of the experimental system can cover 0.15~0.85 MPa evaporation pressure, 20~120 kg/(m2·s)mass flow density, 0~1.0 dryness and 0~10 kW/m2 heat flow density. The thermodynamic model of the experimental system is constructed, and the temperature, pressure data and equipment load parameters of each node under the experimental conditions are obtained. The energy consumption of the system is analyzed and compared with the existing data. It is found that the energy consumption of the regenerative system with back heat is lower than that of the non regenerative system in each dryness. When the dryness is 0.1, the energy consumption is reduced by 75%, when the dryness is 0.5, the energy consumption is reduced by 43%, and when the dryness is 1, the energy consumption is reduced by 3%.

Key words: power engineering, engineering thermophysics, low temperature high mass flow density, back heat, energy consumption

CLC Number: 

  • TB61

Fig.1

Flowchart of principle of low temperature massflow density experimental system"

Fig.2

Plate-fin reheater"

Table 1

Result of each node state calculation"

节点编号预冷段液化段深冷段
温度/°C压力/MPa温度/°C压力/MPa温度/°C压力/MPa
130.000.1930.000.2230.000.24
240.001.5040.001.5040.001.50
320.561.45-14.541.45-85.021.45
410.001.42////
510.001.42-14.541.45//
6-25.001.93-25.001.42//
7-25.001.93-25.001.42-85.021.45
8-54.321.29-137.911.32-172.451.35
9-53.950.26-137.380.29-172.000.31
10-32.420.25-51.560.28-172.000.31
11-30.520.24-49.770.27-109.140.29
1230.000.1930.000.2230.000.24

Table 2

Calculation result of load per device"

设备名称预冷段液化段深冷段
隔膜压缩机59.4177.68101.98
气化回热器28.0639.7182.40
一级冷却换热器59.88--
二级冷却换热器47.2625.66-
三级冷却换热器19.40149.39143.66
干度调节电热器129.69174.67140.76

Fig.3

Comparison of energy consumption with and without reheat in pre?cooling section"

Fig.4

Comparison of liquid nitrogen flow rate inpre-cooling section"

Fig.5

Hot-side outlet mass temperature of reheater at different dryness"

1 胡宗杰,肖春江,李治龙,等. 基于超声雾化的碳氢燃料多液滴流制备系统[J]. 吉林大学学报: 工学版,2012,42(4): 871-876.
Hu Zong-jie, Xiao Chun-jiang, Li Zhi-long, et al. Multi-droplet stream creating system of hydrocarbon fuel based on ultrasonic atomization technology[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(4): 871-876.
2 牛亚楠. 多元混合制冷剂小型天然气液化装置的模拟研究[D]. 上海: 同济大学机械工程学院, 2007.
Niu Ya-nan. Heat balance test and energy-saving assessment of a industrial glass furnace[D]. Shanghai: School of Mechanical Engineering, Tongji University, 2007.
3 傅佳宏,俞小莉,药凌宇, 等,工程机械独立式冷却模块流动传热仿真对比 [J]. 吉林大学学报: 工学版,2016,46(2): 451-456.
Fu Jia-hong, Yu Xiao-li, Yao Ling-yu, et al. Numerical comparison of flow and heat transfer in detached cooling module for construction machinery[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(2): 451-456.
4 孙崇正, 李玉星, 韩辉, 等. 海况倾斜条件下DMR液化工艺中绕管式换热器运行可靠性研究[J]. 油气地面工程, 2019, 38(10): 49-56.
Sun Chong-zheng, Li Yu-xing, Han Hui, et al. Operation reliability study on spiral wound heat exchanger of DMR liquefaction process under wave tilt conditions[J]. Oil-Gas Field Surface Engineering, 2019, 38(10): 49-56.
5 肖娟, 简冠平, 王家瑞. 缠绕管式换热器性能及应用研究进展[J]. 化工机械, 2016, 43(4): 423-428.
Xiao Juan, Jian Guan-ping, Wang Jia-rui. Progress in performance and application study for wound-tube heat Exchanger[J]. Chemical Engineering & Machinery, 2016, 43(4): 423-428.
6 Hasan M M, Karimi I A, Alfadala H E, et al. Operational modeling of multi-stream heat exchangers with phase changes[J]. AIChE Journal, 2009, 55(1): 150-171.
7 Pacio J C, Dorao C A. A review on heat exchanger thermal hydraulic models for cryogenic applications[J]. Cryogenics, 2011, 51(7): 366-379.
8 玄哲浩,程崟,崔淑琴. 换热器性能试验测控系统[J].吉林大学学报: 工学版, 2003, 33(1): 53-55.
Xuan Zhe-hao, Cheng Yin, Cui Shu-qin. Control unit for heat exchanger performance test system[J]. Journal of Jilin University(Engineering and Technology Edition), 2003, 33(1): 53-55.
9 Neeraas B O, Fredheim A O, Aunan B. Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3565-3572.
10 朱建鲁, 常学煜, 韩辉, 等. FLNG绕管式换热器晃动实验分析[J]. 化工学报, 2017, 68(9): 3358-3367.
Zhu Jian-lu, Chang Xue-yu, Han Hui, et al. Experimental study on effect of sloshing on performance of heat exchanger[J]. CIESC Journal, 2017, 68(9): 3358-3367.
11 李丰志, 于佳文, 鹿来运, 等. LNG绕管式换热器管侧流动与传热实验台设计及验证[J]. 哈尔滨工业大学学报, 2017, 49(2): 98-102.
Li Feng-zhi, Yu Jia-wen, Lu Lai-yun, et al. Design and verification for tube- side flow and heat transfer test-rig of coil-wound LNG heat exchangers[J]. Journal of Harbin Institute of Technology, 2017, 49(2): 98-102.
12 王刚, 巨永林. 用于天然气液化流程的组合式低温热管换热器的实验测试[J]. 化工学报, 2015, 66(): 123-131.
Wang Gang, Ju Yong-lin. Experimental investigation of hybrid cryogenic heat pipe heat exchanger in LNG process[J]. CIESC Journal, 2015, 66(Sup.2): 123-131.
13 Sun C Z, Li Y X, Han H, Zhu J L. Experimental research on the adaptability of liquid natural gas spiral wound heat exchanger in dual mixed refrigeration liquefaction process[J]. Experimental Thermal and Fluid Science, 2018, 98: 124⁃136.
14 丁超, 胡海涛, 丁国良, 等. 运行工况对LNG绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423.
Ding Chao, Hu Hai-tao, Ding Guo-liang, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423.
15 Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Research, 1976, 15(1): 59-64.
[1] Bao-feng SUN,Jiao-jiao LIU,Tian-zi YAO,Xin-xin REN. Electric delivery vehicle routing problem with flexible time window integrated with energy consumption estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1047-1059.
[2] Ying HE,Jun-song FAN,Wei WANG,Geng SUN,Yan-heng LIU. Joint optimization of secure communication and trajectory planning in unmanned aerial vehicle air⁃to⁃ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 913-922.
[3] Bao-feng SUN,Tian-zi YAO,Yu-qi CHEN. Electric delivery vehicle routing problem optimization model with time⁃varying traffic congestion [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 468-479.
[4] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[5] Zhen-jun XU,Hao WANG,Kai-yuan ZHAO,Bo-yi HAO,Qing-qing LI,Chang-hao WANG. Therodynamic performance of compound solar energy gas engine heat pump [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1759-1763.
[6] Tong-bin ZHAO,Yi-sheng WU,Yao-zong DUAN,Zhen HUANG,Dong HAN. RP⁃3 jet fuel lubricity and improvement measurements [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 533-540.
[7] Jian-wu YU,Ya-ling CHEN,Guang-hui FAN,Shi-gang HU,You-yu BAO. Structural design and thermal dissipation performance analysis of liquid cooling plates with parallel flow channels for lithium batteries [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2788-2795.
[8] Si-feng ZHU,Ming-yang ZHAO,Zheng-yi CHAI. Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2698-2705.
[9] Zhen-jun XU,Hao WANG,Yin-cheng WANG,Nuo ZHANG,Meng CHEN,Qing-qing LI. Flow heat transfer performance of microchannel low temperature heat exchanger [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2294-2299.
[10] Wen-long TENG,Bing-hu CONG,Yun-kun SHANG,Yu-chen ZHANG,Tian BAI. Modeling of building energy consumption prediction based on MEA⁃BP neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1857-1865.
[11] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[12] MENG Yu-bo, LI Pi-mao, ZHANG You-tong, WANG Zhi-ming. Inhibition of pressure fluctuation and multi-injection fuel mass deviation in high pressure common rail system [J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[13] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[14] MENG Yu-bo, ZHANG You-tong, WANG Zhi-ming, ZHANG Xiao-chen, FAN Li-kang, LI Tao. Couple hysteretic thermo-electro-mechanical performance of piezoelectric actuators for fuel injector [J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[15] CUI Jin-sheng, HOU Xu-yan, DENG Zong-quan, PAN Wan-jing, JIANG Sheng-yuan. Measurement system and experiment study of the effective thermal conductivity of granular system in a vacuum [J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!