Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (6): 1658-1668.doi: 10.13229/j.cnki.jdxbgxb.20221197
Jun WANG1(),Jia-wu LI1,2(),Feng WANG1,2,Jiu-peng ZHANG1,Xiao-ming HUANG3
CLC Number:
1 | 郑一峰, 赵群, 暴伟, 等. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报:工学版, 2018, 48(2): 466-472. |
Zheng Yi-feng, Zhao Qun, Bao Wei, et al. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 466-472. | |
2 | 郭殊伦, 钟铁毅, 闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报:工学版, 2021, 51(5): 1756-1762. |
Guo Shu-lun, Zhong Tie-yi, Yan Zhi-gang, et al. Calculation of method of buffeting response for stay cables of long-span cable-stayed bridge[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1756-1762. | |
3 | 马建,孙守增,杨琦,等. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报, 2014, 27(5): 1-96. |
Ma Jian, Sun Shou-zeng, Yang Qi, et al. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96. | |
4 | 廖海黎, 李明水, 马存明, 等. 桥梁风工程2019年度研究进展[J]. 土木与环境工程学报:中英文, 2020, 42(5): 56-66. |
Liao Hai-li, Li Ming-shui, Ma Cun-ming, et al. State-of-the-art review of bridge wind engineering in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 56-66. | |
5 | . 公路桥梁抗风设计规范 [S]. |
6 | 沈正峰. 喇叭形山口下Π型主梁斜拉桥抖振研究[D]. 西安:长安大学公路学院, 2021. |
Shen Zheng-feng. Study on buffeting of the π type main girder cable-stayed bridge in a trumpet-shaped mountain pass[D]. Xi'an: School of Highway, Chang'an University, 2021. | |
7 | 宋佳玲. 山区沟谷地形风场特性及其对人行悬索桥静风响应的影响[D]. 西安:长安大学公路学院, 2021. |
Song Jia-ling. Study on wind characteristics and aerostatic performance of pedestrian suspension bridge in the mountainous valleys[D]. Xi'an: School of Highway, Chang'an University, 2021. | |
8 | Song J L, Li J W, Xu R Z, et al. Field measurements and CFD simulations of wind characteristics at the Yellow River bridge site in a converging-channel terrain[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 58-72. |
9 | Lystad T M, Fenerci A, Øiseth O. Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 558-573. |
10 | Tang H J, Li Y L, Shum K M, et al. Non-uniform wind characteristics in mountainous areas and effects on flutter performance of a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: No.104177. |
11 | Ren W, Pei C, Ma C, et al. Field measurement study of wind characteristics at different measuring positions along a bridge in a mountain valley[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 216: No. 104705. |
12 | 王浩,李爱群. 大跨度悬索桥抖振数值模拟与现场实测:平稳分析[M]. 南京: 东南大学出版社, 2015. |
13 | 赵林, 李珂, 闫俊峰, 等. 典型流线桥梁断面缩阶微分方程抖振气动力模型[J]. 振动工程学报, 2017, 30(3): 413-421. |
Zhao Lin, Li Ke, Yan Jun-feng, et al. Reduced differential equation aerodynamic buffeting model of typical streamlined bridge cross-section[J]. Journal of Vibration Engineering, 2017, 30(3): 413-421. | |
14 | Shen Z, Li J, Li R, et al. Nonuniform wind characteristics and buffeting response of a composite cable-stayed bridge in a trumpet-shaped mountain pass[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 217: No. 104730. |
15 | Diana G, Yamasaki Y, Larsen A, et al. Construction stages of the long span suspension Izmit Bay Bridge: wind tunnel test assessment[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 300-310. |
16 | Argentini T, Rocchi D, Somaschini C. Effect of the low-frequency turbulence on the aeroelastic response of a long-span bridge in wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: No. 104072. |
17 | 李加武, 林志兴, 项海帆. 桥梁断面雷诺数效应[J]. 空气动力学学报, 2005, 23(1): 123-128. |
Li Jia-wu, Lin Zhi-xing, Xiang Hai-fan. Reynolds number effect of bridge deck section[J]. Acta Aerodynamica Sinica, 2005, 23(1): 123-128. | |
18 | 李加武, 崔欣, 张宏杰, 等. 粗糙度对雷诺数效应的影响[J]. 长安大学学报:自然科学版, 2009, 29(2): 56-59, 64. |
Li Jia-wu, Cui Xin, Zhang Hong-jie, et al. Influence of surface roughness on Reynolds number effects [J]. Journal of Chang'an University (Natural Science Edition), 2009, 29(2): 56-59, 64. | |
19 | 张丹, 李加武, 徐洪涛. 流线型桥梁断面雷诺数效应[J]. 土木工程与管理学报, 2015, 32(4): 67-72. |
Zhang Dan, Li Jia-wu, Xu Hong-tao. Reynolds number effect of streamline-like bridge deck section[J]. Journal of Civil Engineering and Management, 2015, 32(4): 67-72. | |
20 | 林阳, 封周权, 华旭刚, 等. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192-200. |
Lin Yang, Feng Zhou-quan, Hua Xu-gang, et al. Artificial bee colony algorithm for flutter derivatives identification of bridge decks using free vibration records[J]. Engineering Mechanics, 2020, 37(2): 192-200. | |
21 | Ali K, Katsuchi H, Yamada H. Generalized framework for identification of indicial response functions from flutter derivatives of long-span bridges[J]. Engineering Structures, 2021, 244: No.112727. |
22 | 张伟峰, 张志田, 张显雄, 等. 三类气动导纳数值识别方法的适应性研究[J]. 空气动力学学报, 2019, 37(2): 216-225. |
Zhang Wei-feng, Zhang Zhi-tian, Zhang Xian-xiong, et al. Applicability study on three numerical methods for identifying aerodynamic admittances[J]. Acta Aerodynamica Sinica, 2017, 37(2): 216-225. | |
23 | Chen W, Zhu Z. Numerical simulation of wind turbulence by DSRFG and identification of the aerodynamic admittance of bridge decks[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 1515-1535. |
24 | 王浩, 李爱群. 斜风作用下大跨度桥梁抖振响应时域分析(II):现场实测验证[J]. 土木工程学报, 2009, 42(10): 81-87. |
Wang Hao, Li Ai-qun. Time-domain analysis on buffeting response of long span bridge under oblique wind (II): field measurement validation[J]. China Civil Engineering Journal, 2009, 42(10): 81-87. | |
25 | 王浩, 李爱群, 焦常科, 等. 基于规范及实测风谱的苏通大桥抖振响应对比研究[J]. 土木工程学报, 2011, 44(10): 91-97. |
Wang Hao, Li Ai-qun, Jiao Chang-ke, et al. Comparable study on the buffeting response of sutong bridge based on specification and measured wind power spectrum[J]. China Civil Engineering Journal, 2011, 44(10): 91-97. | |
26 | 王浩, 陶天友, 郭彤, 等. 基于实测与规范风谱的三塔悬索桥抖振性能对比[J]. 东南大学学报:自然科学版, 2013, 43(5): 986-992. |
Wang Hao, Tao Tian-you, Guo Tong, et al. Comparable study on buffeting performance of triple-tower suspension bridge based on measured wind spectrum and specification wind spectrum[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 986-992. | |
27 | 喻梅, 廖海黎, 李明水, 等. 大跨度桥梁斜风作用下抖振响应现场实测及风洞试验研究[J]. 实验流体力学, 2013, 27(3): 51-55, 76. |
Yu Mei, Liao Hai-li, Li Ming-shui, et al. Field measurement and wind tunnel test of buffeting response of long-span bridge under skew wind[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 51-55, 76. | |
28 | Cheynet E, Jakobsen J B, Snæbjörnsson J. Buffeting response of a suspension bridge in complex terrain[J]. Engineering Structures, 2016, 128: 474-487. |
29 | Xu F, Ma Z, Zeng H, et al. A new method for studying wind engineering of bridges: large-scale aeroelastic model test in natural wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: No.104234. |
30 | 刘波, 彭运动, 侯满. 贵州都格北盘江大桥主桥设计及关键技术[J]. 桥梁建设, 2018, 48(6): 81-86. |
Liu Bo, Peng Yun-dong, Hou Man. Design and key technology of main bridge of Beipanjiang Bridge[J]. Bridge Construction, 2018, 48(6): 81-86. | |
31 | 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. |
Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. | |
32 | Hu L, Xu Y L, Zhu Q, et al. Tropical storm-induced buffeting response of long-span bridges: enhanced nonstationary buffeting force model[J]. Journal of Structural Engineering, 2017, 143(6): No.04017027. |
33 | 陶天友. 台风作用下大跨斜拉桥抖振非平稳效应模拟与实测研究[D]. 南京:东南大学交通学院, 2018. |
Tao Tian-you. Simulation and measurement analysis on nonstationary effects of buffeting responses of a long-span cable-stayed bridge under typhoon actions[D]. Nanjing: School of Transportation, Southeast University, 2021. | |
34 | Hao J M, Wu T. Downburst-induced transient response of a long-span bridge: a CFD-CSD-based hybrid approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 273-286. |
35 | 归柯庭, 钟文琪. 高等流体力学(一)[M]. 北京: 科学出版社, 2018. |
36 | 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005. |
37 | 聂若鹰. 风力等级划分参考表[J]. 气象水文海洋仪器, 2007, 81(1): 67. |
Nie Ruo-ying. Reference table of wind speed classification[J]. Meteorological, Hydrological and Marine Instruments, 2007, 81(1): 67. | |
38 | 党嘉敏. 栏杆展向布置形式对直腹板钢箱梁涡振响应的影响[D]. 西安: 长安大学公路学院, 2021. |
Dang Jia-min. The effect of railing spanwise arrangement on vortex-induced vibration of steel box girder with vertical webs[D]. Xi'an: School of Highway, Chang'an University, 2021. | |
39 | Han Y, Shen L, Xu G, et al. Multiscale simulation of wind field on a long-span bridge site in mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 260-274. |
40 | Huang G, Cheng X, Peng L, et al. Aerodynamic shape of transition curve for truncated mountainous terrain model in wind field simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 80-90. |
41 | 庞加斌. 沿海和山区强风特性的观测分析与风洞模拟研究[D]. 上海: 同济大学土木工程学院, 2006. |
Pang Jia-bin. Field investigation and wind tunnel simulation of strong wind characteristics in coastal and mountainous regions[D]. Shanghai: College of Civil Engineering, Tongji University, 2021. | |
42 | . Hydrometry-velocity-area methods using current-meters-collection and processing of data for determination of uncertainties in flow measurement [S]. |
43 | 杨赐. 风与人群荷载共同作用下人行悬索桥的振动响应[D]. 西安:长安大学公路学院, 2018. |
Yang Ci. Vibration response of pedestrian suspension bridge under the combination of wind load and crowd load[D]. Xi'an: School of Highway, Chang'an University, 2018. |
[1] | Hua WANG,Long-lin WANG,Zi-mo ZHANG,Xin HE. Safety early warning technology of continuous rigid frame bridges based on crack width variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1650-1657. |
[2] | Yu FENG,Jian-ming HAO,Feng WANF,Jiu-peng ZHANG,Xiao-ming HUANG. Analysis of transient wind⁃induced response of long⁃span bridge under nonstationary wind field [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1638-1649. |
[3] | Chun-li WU,Shi-ming HUANG,Kui LI,Zheng-wei GU,Xiao-ming HUANG,Bing-tao ZHANG,Run-chao YANG. Analysis of pier action effect under flood based on numerical simulation and statistical analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1612-1620. |
[4] | Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600. |
[5] | Hui JIANG,Xin LI,Xiao-yu BAI. Review on development of bridge seismic structural systems: from ductility to resilience [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1550-1565. |
[6] | Zi-yu LIU,Shi-tong CHEN,Mo-mo ZHI,Xiao-ming HUANG,Zhe-xin CHEN. Ultimate bearing capacity of temporary⁃permanent conversion rush⁃repair steel pier for emergency use [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1601-1611. |
[7] | Yue ZHANG,Chuan-sen LIU,Fei SONG. Influence of abutment back wall on continuous girder bridge's seismic fragility [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1372-1380. |
[8] | Shu-wei LAN,Dong-hua ZHOU,Xu CHEN,Nan-ming MO. Practical calculation method for the critical bearing capacity of double column bridge with high piers [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1105-1111. |
[9] | Qi-kai SUN,Nan ZHANG,Xiao LIU,Zi-ji ZHOU. Dynamic reduction coefficients of steel⁃concrete composite beam based on Timoshenko beam theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 488-495. |
[10] | Hua-wen YE,Zhi-chao DUAN,Ji-lin LIU,Yu ZHOU,Bing HAN. Wheel⁃load diffusion effect on orthotropic steel⁃concrete composite bridge deck [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1808-1816. |
[11] | Li-feng WANG,Zi-wang XIAO,Sai-sai YU. New risk analysis method based on Bayesian network for hanging basker system of multi-tower cable-stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 865-873. |
[12] | Yan-ling ZHANG,Can WANG,Xu ZHANG,Ang-yang WANG,Yun-sheng LI. Human⁃induced vibration analysis and pedestrian comfort evaluation for suspension footbridge with different hunger systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2644-2652. |
[13] | Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078. |
[14] | Wei CHEN,Tian-bao WAN,Zhong-bin WANG,Xuan LI,Rui-li SHEN. Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1749-1755. |
[15] | Shu-lun GUO,Tie-yi ZHONG,Zhi-gang YAN. Calculation method of buffeting response for stay cables of long⁃span cable⁃stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1756-1762. |
|