Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 865-873.doi: 10.13229/j.cnki.jdxbgxb20210954

Previous Articles    

New risk analysis method based on Bayesian network for hanging basker system of multi-tower cable-stayed bridge

Li-feng WANG(),Zi-wang XIAO,Sai-sai YU   

  1. School of Civil Engineering,Northeast Forestry University,Harbin 150040,China
  • Received:2021-09-23 Online:2022-04-01 Published:2022-04-20

Abstract:

In order to better improve the safety level of hanging basket system of cantilever-construction and clarify the risk factors contained in the construction process of hanging basket system and reasonably avoid risks, in this paper, a new Bayesian network-based dynamic risk analysis method for hanging basket system of suspended casting multi-tower cable-stayed bridge is proposed. Also, taking the PAIRA bridge in Bangladesh as an example, the relationship between risk probability and risk intensity matrix of hanging basket system is discussed, the criterion of risk rating is clarified. The prediction results can provide a new idea and reference for the risk decision and the selection of countermeasures of hanging basket system in cantilever-construction bridge.

Key words: bridge engineering, multi-tower cable-stayed bridge, dynamic risk analysis, traveller system, Bayesian networks, safety capability evaluation

CLC Number: 

  • TU997

Fig.1

Structural failure risk analysis flow chart based on Bayesian network"

Fig.2

Hazard identification of traveller structure on site"

Fig.3

Structural hazards"

Fig.4

Protective hazards"

Fig.5

Behavioral hazards"

Table 1

Probability scale"

事故概率描述对应的可能性概率等级概率范围
极少的基本不可能发生I0<P≤10%
较少的不太可能发生II10%<P≤30%
有时的可能发生III30%<P≤90%
经常的很可能发生IV90%<P≤100%

Table 2

Loss scale"

严重程

度描述

事故损失描述损失程度严重度评分
轻微影响较小,注意前期预防A0<P≤29
中等一定程度的安全事故及经济损失,需认真对待,密切关注,建立风险预测与控制机制B30≤P<79
严重较严重的安全事故及经济损失,采取有效的组织管理措施、技术措施,降低危害C80≤P<95
灾难性产生重大的安全事故及经济损失,应取消既定方案D95≤P≤100

Table 3

Risk level rating"

风险损失风险概率
0<Q≤10%10%<Q≤30%30%<Q≤90%90%<Q≤100%
0<Q≤29IIIIII
0~89~1617~2323~29
30≤Q<79IIIIIIIII
30~5051~6061~7071~79
80≤Q<95IIIIIIIIIV
80~8485~8889~9291~94
95≤Q≤100IIIIIIVIV
95~9697~9899100

Fig.6

Traveller failure topology network"

Table 4

Bayesian network node information of traveller failure"

系列A系列B系列C系列D系列E
顶事件AB1挂篮体系稳定性不满足C1系统整体稳定性不满足D1

挂篮行走系统抗倾覆

稳定性不满足

E1行走轨道操作不规范
E2轨道连接不紧固
D2

挂篮构件连接紧固性

不满足

E3疲劳作业、夜晚作业
E4安全监督检查不充分
C2设计稳定性不满足
C3施工荷载不平衡D3

自然环境不满足,如大风、冬施保温

措施分布不均

D4挂篮施工安全技术交底不充分
B2挂篮结构安全储备不满足C4自身构件稳定性不满足D5构件材料设计刚度不满足E5出厂质检不合格
E6挂篮构件损耗
D6挂篮构件损坏、构件弯曲、截面削减
C5构件材料设计强度不足
B3挂篮施工工艺不满足C6挂篮组装工艺不满足D7挂篮组拼流程不满足E7施工人员资质不满足
E8安拆技术交底不充分
D8悬臂T构两侧挂篮组拼不同步
C7挂篮行走系统不满足D9同向行走的多榀主桁位移不同步
D10滑道不顺畅,行走速度不易控制
B4悬浇梁段技术不满足C8悬浇梁段技术不满足D11混凝土浇筑速度过快
D12模板结构强度及刚度不满足
C9混凝土强度等不满足D13混凝土配合比不合理或养生不到位
D3

自然环境不满足,如大风、冬施保温

措施分布不均

Fig.7

Layout plan for PAIRA bridge in Bangladesh(unit:m)"

Fig.8

Structure assembly process of traveller system"

Fig.9

Bayesian network derivation of failure probability for PAIRA bridge traveller system"

Fig.10

Structure assembly process of traveller system"

Fig.11

Construction risk forecast chart of traveller system"

1 韩洋. 大跨钢筋混凝土箱拱悬浇挂篮设计与计算[J]. 中外公路, 2019, 39(5): 136-138.
Han Yang. Design and calculation of large span reinforced concrete box arch hanging basket[J]. Journal of China and Foreign Highway, 2019, 39(5): 136-138.
2 马伟敬, 吕大刚. 悬臂施工中挂篮实例计算与分析[J]. 交通世界, 2021, 27(19): 79-81.
Ma Wei-jing, Lu Da-gang. Calculation and analysis of hanging basket in cantilever construction[J]. Transp World, 2021, 27(19): 79-81.
3 王禹. 大跨径高墩混凝土斜拉桥0号块施工技术研究[J].公路, 2021, 66(7): 147-151.
Wang Yu. Study on construction Technology of block 0 of long-span high pier concrete cable-stayed bridge[J]. Highway, 2021, 66(7): 147-151.
4 樊学平, 吕大刚. 基于DLM的桥梁结构承载力的贝叶斯预测[J]. 哈尔滨工业大学学报, 2012, 44(12): 13-17.
Fan Xue-ping, Lu Da-gang. Bayesian prediction of structural bearing capacity of aging bridges based on dynamic linear model[J]. Journal of Harbin Institue of Institute Technology, 2012, 44(12): 13-17.
5 项琴, 李远富, 朱宏伟. 基于模糊贝叶斯网络的山区高速铁路桥梁运营风险评估[J].铁道标准设计, 2014, 58(11): 76-80.
Xiang Qin, Li Yuan-fu, Zhu Hong-wei. Operation risk assessment of High-speed railway bridges in mountainous area based on fuzzy Bayesian[J]. Railway Standard Design, 2014, 58(11): 76-80.
6 李鹏飞. 基于贝叶斯网络的PC斜拉桥主梁标高预测[D]. 广州: 华南理工大学土木与交通学院,2019.
Li Peng-fei. Elevation Prediction of PC cable-stayed bridge girder with Bayesian network[D]. Guangzhou: School of Civil Engineering and Transportation, South China University of Technology, 2019.
7 Weber P, Medinaoliva G, Simon C, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 671-682.
8 Trucco P, Cagno E, Ruggeri F, et al. A Bayesian belief network modelling of organizational factors in risk analysis: a case study in maritime transportation[J]. Reliability Engineering & System Safety, 2008, 93(6): 845-856.
9 Wan H, Ren W. Stochastic model updating approach by using Bayesian inference[J]. Journal of Highway and Transport, 2016, 29(4): 67-76, 95.
10 Liu Xiao-yan, Zou Ai-ping. Risk assessment of hanging basket construction of long-span bridge[J]. Journal of Changsha University of Science& Technology (Natural Science), 2020, 17(4): 16-22.
11 肖向荣. 前支点挂篮结构优化设计与仿真分析[J]. 中外公路, 2016, 36(3): 139-143.
Xiao Xiang-rong. Optimization design and simulation analysis of front fulcrum traveller structure[J]. Journal of China and Foreign Highway, 2016, 36(3): 139-143.
12 周爱华. 双幅连续梁多挂篮同步施工关键技术[J].世界桥梁, 2020, 48(5): 42-45.
Zhou Ai-hua. Key techniques of synchronized construction conducted by multiple form travellers for continuous twin-deck bridge[J]. World Bridges, 2020, 48(5): 42-45.
13 韩宝睿, 濮海建, 丁梓轩, 等. 基于几何拓扑的城市路网结构定量分析[J]. 森林工程, 2021, 37(4): 126-134.
Han Bao-rui, Pu Hai-jian, Ding Zi-xuan, et al. A method for recognizing wood knots defects based on googlenet convolutional neural network[J]. Forest Engineering, 2021, 37(4): 126-134.
14 宋传中. 悬臂施工连续梁桥施工过程风险识别[J].中外公路, 2012, 32(4): 182-185.
Song Chuan-zhong. Risk identification of continuous girder bridge in cantilever construction [J]. Journal of China and Foreign Highway, 2012, 32(4): 182-185.
[1] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[2] Wei CHEN,Tian-bao WAN,Zhong-bin WANG,Xuan LI,Rui-li SHEN. Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1749-1755.
[3] Shu-lun GUO,Tie-yi ZHONG,Zhi-gang YAN. Calculation method of buffeting response for stay cables of long⁃span cable⁃stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1756-1762.
[4] Kai GAO,Gang LIU. Effective strength improvement of global critical strength branch and bound method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 597-603.
[5] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[6] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[7] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[8] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[9] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[10] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[11] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
[12] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[13] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
[14] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[15] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!