Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 488-495.doi: 10.13229/j.cnki.jdxbgxb20210742

Previous Articles     Next Articles

Dynamic reduction coefficients of steel⁃concrete composite beam based on Timoshenko beam theory

Qi-kai SUN(),Nan ZHANG(),Xiao LIU,Zi-ji ZHOU   

  1. School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
  • Received:2021-08-04 Online:2023-02-01 Published:2023-02-28
  • Contact: Nan ZHANG E-mail:qikai.sun@bjtu.edu.cn;nzhang@bitu.edu.cn

Abstract:

The motion differential equation of steel-concrete composite beams considering the shear slip effect was derived based on the Timoshenko beam theory. And the analytical expressions of eigenfrequencies and modes for simply-supported steel-concrete composite beams were obtained. The dynamic reduction coefficients which were more suitable for dynamic analysis of steel-concrete composite beams were proposed, and the analytical expressions of "stiffness reduction coefficient" and "frequency reduction coefficient" were given. Then the dynamic reduction coefficients were compared with the existing one based on Euler-Bernoulli beam theory. The effects of shear connector stiffness, shear deformation, rotary inertia, and span-to-depth ratio on the frequency reduction coefficient were discussed. The results show that the effect of the rotary inertia can be ignored, but that of the shear deformation must be considered in the dynamic analysis of steel-concrete composite beams with smaller span-to-depth ratios.

Key words: bridge engineering, steel-concrete composite beam, dynamic reduction coefficient, shear deformation, shear slip, analytical expression

CLC Number: 

  • U441

Fig.1

Structural drawing of steel concrete composite beam"

Fig.2

Structural drawing of composite beam(mm)"

Table 1

Comparison of eigenfrequencies for composite beam"

阶次SD/RI梁仅SD梁E-B梁
1158.29158.69 (0.3%)165.29 (4.4%)
2542.04546.49 (0.8%)618.90 (14.2%)
31077.901093.73 (1.5%)1373.02 (27.4%)
41709.641745.80 (2.1%)2428.52 (42.0%)
52408.852474.51 (2.7%)3785.50 (57.1%)

Fig.3

Effect of span-to-depth ratio on the errors of 5th frequency"

Fig.4

Effect of shear modulus on the errors of 5th frequency"

Fig.5

Effect of shear connector stiffness on the frequency reduction coefficient of the first three frequencies"

Fig.6

Effect of shear modulus on frequency reduction coefficient of the fundamental frequencies"

Table 2

Comparison of natural characteristics for steel-concrete composite beam"

阶次实测值ANSYS文献[9]模型本文模型
fnEBγnEBfnTγnT
119.3821.0822.270.8821.280.84
263.1362.4875.960.7567.020.66
3-114.48156.090.69126.070.56
1 聂建国,余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8.
Nie Jian-guo, Yu Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32(2): 3-8.
2 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-122.
Nie Jian-guo, Tao Mu-xuan, Wu Li-li,et al.Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122.
3 刘永健,刘江.钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59.
Liu Yong-jian, Liu Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59.
4 聂建国,沈聚敏,余志武. 考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J]. 土木工程学报, 1995, 28(6): 11-17.
Nie Jian-guo, Shen Ju-min, Yu Zhi-wu. A reduced rigidity method for calculating deformation of composite steel-concrete beams[J]. China Civil Engineering Journal, 1995, 28(6): 11-17.
5 王景全,吕志涛,刘钊. 部分剪力连接钢-混凝土组合梁变形计算的组合系数法[J]. 东南大学学报: 自然科学版, 2005, 35(): 5-10.
Wang Jing-quan, Lv Zhi-tao, Liu Zhao. Consistency factor method for calculating deformation of composite steel-concrete girders with partial shear connection[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(S1): 5-10.
6 徐荣桥,陈德权.组合梁挠度计算的改进折减刚度法[J]. 工程力学,2013, 30(2): 285-291.
Xu Rong-qiao, Chen De-quan. Modified reduced stiffness method for calculating the deflection of composite beams[J]. Engineering Mechanics, 2013, 30(2): 285-291.
7 张云龙, 刘占莹, 吴春利, 等. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报: 工学版, 2017, 47(3): 789-795.
Zhang Yun-long, Liu Zhan-ying, Wu Chun-li,et al. Static and dynamic responses of steel-concrete composite beams[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 789-795.
8 侯忠明,夏禾,张彦玲. 栓钉连接件抗剪刚度对钢-混凝土结合梁自振特性影响研究[J].中国铁道科学, 2012, 33(6): 24-29.
Hou Zhong-ming, Xia He, Zhang Yan-ling. The influence of the shear stiffness of stud connectors on the natural vibration characteristics of steel-concrete composite beams[J]. China Railway Science, 2012, 33(6): 24-29.
9 侯忠明,夏禾,王元清,等. 钢-混凝土组合梁动力折减系数研究[J]. 振动与冲击, 2015, 34(4): 74-81.
Hou Zhong-ming, Xia He, Wang Yuan-qing, et al. Dynamic redution coefficients for a steel-concrete composite beam[J]. Journal of Vibration and Shock, 2015, 34(4): 74-81.
10 张云龙, 郭阳阳, 王静, 等. 钢-混组合梁的固有频率及其振型[J]. 吉林大学学报: 工学版, 2020, 50(2): 581-588.
Zhang Yun-long, Guo Yang-yang, Wang Jing,et al. Natural frequency and mode of vibration of steel-concrete composite beams[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
11 孙琪凯, 张楠, 刘潇, 等. 基于能量法分析考虑纵向刚度分布的钢-混组合梁自振特性[J]. 振动与冲击, 2021, 40(10): 67-72.
Sun Qi-kai, Zhang Nan, Liu Xiao, et al. Free vibration characteristics of steel-concrete composite beams considering longitudinal stiffness distribution based on energy method[J]. Journal of Vibration and Shock, 2021, 40(10): 67-72.
12 Sun Q K, Zhang N, Liu X, et al. Free vibrations of steel-concrete composite beams by the dynamic direct stiffness method[J]. International Journal of Structural Stability and Dynamic, 2021, 21(4): 2150049.
13 Berczyński S, Wróblewski T. Vibration of steel-concrete composite beams using the Timoshenko beam model[J]. Journal of Vibration and Control, 2005, 11(6): 829-848.
14 Xu R Q, Wu Y F. Static dynamic and buckling analysis of partial interaction composite members using Timoshenko's beam theory[J]. International Journal of Mechanical Sciences, 2007, 49(10): 1139-1155.
15 Nguyen Q H, Hjiaj M, Grognec P L. Analytical approach for free vibration analysis of two-layer Timoshenko beams with interlayer slip[J]. Journal of Sound and Vibration, 2012, 331(12): 2949-2961.
16 Lin J P, Wang G N, Bao G J, et al. Stiffness matrix for the analysis and design of partial-interaction composite beams[J]. Construction and Building Materials, 2017, 156: 761-772.
17 Lin J P, Wang G N, Xu R Q. Variational principles and explicit finite-element formulations for the dynamic analysis of partial-interaction composite beams[J]. Journal of Engineering Mechanics-ASCE, 2020, 146(6): 04020055.
18 Sun Q K, Zhang N, Liu X, et al. An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams[J]. Steel and Composite Structures, 2021, 38(3): 281-291.
[1] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[2] Hua-wen YE,Zhi-chao DUAN,Ji-lin LIU,Yu ZHOU,Bing HAN. Wheel⁃load diffusion effect on orthotropic steel⁃concrete composite bridge deck [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1808-1816.
[3] Li-feng WANG,Zi-wang XIAO,Sai-sai YU. New risk analysis method based on Bayesian network for hanging basker system of multi-tower cable-stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 865-873.
[4] Yan-ling ZHANG,Can WANG,Xu ZHANG,Ang-yang WANG,Yun-sheng LI. Human⁃induced vibration analysis and pedestrian comfort evaluation for suspension footbridge with different hunger systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2644-2652.
[5] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[6] Wei CHEN,Tian-bao WAN,Zhong-bin WANG,Xuan LI,Rui-li SHEN. Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1749-1755.
[7] Shu-lun GUO,Tie-yi ZHONG,Zhi-gang YAN. Calculation method of buffeting response for stay cables of long⁃span cable⁃stayed bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1756-1762.
[8] Kai GAO,Gang LIU. Effective strength improvement of global critical strength branch and bound method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 597-603.
[9] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[10] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[11] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[12] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[13] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[14] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[15] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[4] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .