Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1756-1762.doi: 10.13229/j.cnki.jdxbgxb20200534

Previous Articles    

Calculation method of buffeting response for stay cables of long⁃span cable⁃stayed bridge

Shu-lun GUO1(),Tie-yi ZHONG1(),Zhi-gang YAN2   

  1. 1.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.Engineering Management Center,China Railway Corporation,Beijing 100038,China
  • Received:2020-07-16 Online:2021-09-01 Published:2021-09-16
  • Contact: Tie-yi ZHONG E-mail:821949121@qq.com;tyzhong2008@163.com

Abstract:

In order to improve the buffeting response calculation method for cables of long-span cable-stayed bridge, the shortcomings of bridge buffeting response spectrum method are analyzed. Based on bridge buffeting response spectrum method, the aerodynamic damping calculating formula suits for cables in long-span cable-stayed bridge is given, and the approximate formula for the cable buffeting response root mean square along-wind in long-span cable-stayed bridge is proposed. The applicability of the approximate formula is analyzed. The results show that the approximate formula has a good accuracy when the wind speed is higher than 40m/s, meanwhile the sag parameter is between 0.76 and 2.29. The root mean square of cable buffeting response along-wind can be calculated conveniently by this formula, which can provide buffeting response study and engineering analysis with an effective method.

Key words: bridge engineering, long-span cable-stayed bridge, aerodynamic damping, stay cable, buffeting response

CLC Number: 

  • U441

Fig.1

Overall elevation of bridge"

Fig.2

Simulating self-excited force by MATRIX27 element"

Table 1

Parameters of cables"

索号索长/m单位长度质量/kg直径/mλs2
S1136.522131.50.185 520.01
S10231.31696.90.185 520.24
S20359.128131.50.176 340.76
S30493.621145.00.152 121.83
S36576.193145.00.176 342.29

Fig.3

Buffeting response time history of cables"

Fig.4

Buffeting response RMS of cables"

Fig.5

Error change on sag parameter and wind speed"

1 Sears W R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of Aeronautical Science, 1941, 8(3): 104-108.
2 Liepmann H W. On the application of statistical concepts to the buffeting problem[J]. Journal of Aeronautical Science, 1952, 19(12): 793-800.
3 Davenport A G. The application of statistical concepts to the wind loading of structures[J]. Proceedings of ICE, 1961, 19(8): 449-472.
4 Scanlan R H. The action of flexible bridges under wind, II: buffeting theory[J]. Sound and Vibration, 1978, 60(2): 201-211.
5 张志田, 陈添乐, 吴长青. 基于Küssner函数的不同气动导纳模型对大跨桥梁抖振响应的影响[J]. 振动与冲击, 2019, 38(20): 131-139, 163.
Zhang Zhi-tian, Chen Tian-le, Wu Chang-qing. Effects of Küssner-function-based aerodynamic admittance models on the buffeting responses of a long-span bridge[J]. Journal of Vibration and Shock, 2019, 38(20): 131-139, 163.
6 Yang Y, Li M S, Su Y, et al. Aerodynamic admittance of a 5:1 rectangular cylinder in turbulent flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 125-134.
7 Yang Y, Li M S, Liao H L. Three-dimensional effects on the transfer function of a rectangular-section body in turbulent flow[J]. Journal of Fluid Mechanics, 2019, 872: 348-366.
8 Li M, Li M S, Su Y. Experimental determination of the two-dimensional aerodynamic admittance of typical bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 193: 103975.
9 Ma C M, Wang J X, Li Q S, et al. 3D aerodynamic admittances of streamlined box bridge decks[J]. Engineering Structures, 2019, 179: 321-331.
10 Ma C M, Duan Q S, Li Q S, et al. Aerodynamic characteristics of a long-span cable-stayed bridge under construction[J]. Engineering Structures, 2019, 184: 232-246.
11 Yan L, Zhu L D, He X H, et al. Experimental determination of aerodynamic admittance functions of a bridge deck considering oscillation effect[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 83-97.
12 苏益, 李明水. 大跨度桥梁抖振响应的直接估算方法[J]. 中国公路学报, 2019, 32(10): 84-95.
Su Yi, Li Ming-shui. Direct estimation of buffeting response of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 84-95.
13 Li M, Li M S, Zhong Y Z, et al. Buffeting response evaluation of long-span bridges with emphasis on the three-dimensional effects of gusty winds[J]. Journal of Sound and Vibration, 2019, 439: 156-172.
14 陶天友, 王浩. 大跨度桥梁主梁节段模型非平稳抖振时域模拟与分析[J]. 振动工程学报, 2019, 32(5): 830-836.
Tao Tian-you, Wang Hao. Time-domain simulation and analysis of nonstationary buffeting responses of girder section model of a long-span bridge[J]. Journal of Vibration Engineering, 2019, 32(5): 830-836.
15 苏延文, 黄国庆, 曾永平. 强弱非平稳风速对大跨桥梁抖振响应影响研究[J]. 铁道工程学报, 2019, 36(12): 41-47.
Su Yan-wen, Huang Guo-qing, Zeng Yong-ping. Research on the effects of buffeting responses of a long-span bridge subjected to weak and strong non-stationary wind events[J]. Journal of Railway Engineering Society, 2019, 36(12): 41-47.
16 项海帆, 陈伟, 顾明. 桥梁抖振反应谱的实用计算方法[J]. 土木工程学报, 1995, 28(3): 3-8.
Xiang Hai-fan, Chen Wei, Gu Ming. A practical calculation method for bridge buffeting response spectrum[J]. China Civil Engineering Journal, 1995, 28(3): 3-8.
17 陈伟. 大跨度桥梁抖振反应谱研究[D]. 上海: 同济大学木工程学院, 1993.
Chen Wei. Study on buffeting response spectrum of long-span bridges[D]. Shanghai: School of Civil Engineering, Tongji University, 1993.
18 项海帆. 现代桥梁抗风理论与实践[M]. 北京: 人民交通出版社, 2005.
19 .公路桥梁抗风设计规范[S].
20 Matsumoto M, Chen X, Shiraishi N. Buffeting analysis of long span bridge with aerodynamic coupling[C]∥Proceedings of 13th National Symposium on Wind Engineering, Japan Association for Wind Engineering, Japan, 1994: 227-232.
21 Chen X, Matsumoto M, Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges[J]. Journal of Engineering Mechanics ASCE, 126(1): 2000, 17-26.
22 胡晓伦. 大跨度斜拉桥颤抖振响应及静风稳定性分析[D]. 上海: 同济大学木工程学院, 2006.
Hu Xiao-lun. Flutter, buffeting and aerostatic stability analysis for long-span cable-stayed bridges[D]. Shanghai: School of Civil Engineering, Tongji University, 2006.
23 郑一峰, 赵群, 暴伟, 等. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J].吉林大学学报: 工学版, 2018, 48(2): 466-472.
Zheng Yi-feng, Zhao Qun, Bao Wei, et al. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(2): 466-472.
24 兰成. 斜拉索振动及其基于性能的减振设计[D]. 上海: 同济大学木工程学院, 2009.
Lan Cheng. Vibration of stay cable and vibration damping design based on its performance[D]. Shanghai: School of Civil Engineering, Tongji University, 2009.
25 姜浩, 郭学东, 张艳辉. 基于时域分析的风载激励下桥梁结构动力特性识别[J]. 吉林大学学报: 工学版, 2011, 41(5): 1279-1283.
Jiang Hao, Guo Xue-dong, Zhang Yan-hei. Dynamic behavior identification of concrete bridge structure under wind load excitation based on time-domain analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5): 1279-1283.
26 江西省交通设计院. 九江长江公路大桥大跨度斜拉桥施工及成桥阶段减振抑振综合技术研究结题报告[R]. 南昌:江西省交通设计院, 2013.
27 李龙安, 苗润池, 屈爱平. 超长斜拉索风致振动控制研究[J]. 地震工程与工程振动, 2014, 34(3): 206-211.
Li Long-an, Miao Run-chi, Qu Ai-ping. Study on wind-induced vibration control of super-long stay cables[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(3): 206-211.
[1] Wei CHEN,Tian-bao WAN,Zhong-bin WANG,Xuan LI,Rui-li SHEN. Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1749-1755.
[2] Kai GAO,Gang LIU. Effective strength improvement of global critical strength branch and bound method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 597-603.
[3] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[4] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[5] De-shan SHAN,Xiao ZHANG,Xiao-yu GU,Qiao LI. Analytical method for elongation of stayed-cable with catenary configuration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 217-224.
[6] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[7] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[8] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[9] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[10] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
[11] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[12] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
[13] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[14] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
[15] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!