Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (10): 2761-2772.doi: 10.13229/j.cnki.jdxbgxb.20211350

Previous Articles     Next Articles

Thermal-force deformation analysis and prediction modeling of CNC gear hobbing machine workbench

Si-bao WANG1,2(),Zhong-zheng GUO1,2,Chi MA1,2,Shi-long WANG1,2   

  1. 1.College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China
    2.State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044,China
  • Received:2021-12-07 Online:2023-10-01 Published:2023-12-13

Abstract:

In order to reduce the influence of hobbing workbench deformation on machining accuracy, the thermal and mechanical deformation of the workbench were studied.A Subpopulation Adaptive Mind Evolution Algorithm-Back Propagation Neural Network was proposed for thermal-mechanical deformation prediction of hobbing workbench. The initial value, weight and threshold of BP Neural Network were adjusted by SAMEA, which effectively improved the prediction accuracy. Combining K-means clustering and grey correlation analysis (GRA), the thermal error input variables were reduced from eight to three. Aiming at the table deformation caused by cutting force in gear hobbing, the cutting force was represented by the current of machine tool spindle and used as the input variable of the prediction model. Experimental results show that the average prediction accuracy of the proposed SAMEA-BP model is 95.1%, and comparison with other models verifies the validity and generalization of the model.

Key words: thermal error, force error, SAMEA-BP neural network, mean clustering algorithm, grey relation analysis

CLC Number: 

  • TH161

Fig.1

Structure diagram of gear hobbing machine"

Fig.2

Thermal deformation of bed"

Fig.3

Space coordinate system of gear hobbing machine"

Fig.4

Gear hobbing chip formation process"

Fig.5

System framework diagram of mind evolutionary algorithm"

Fig.6

Flow chart of SAMEA-BP"

Fig.7

BP neural network structure"

Table 1

Parameter of MEA"

参数取值参数取值
种群大小40子群体数6
优胜子种群数6迭代次数70
临时子种群数6

Table 2

Geometric parameters of hob and gear workpieces"

滚刀参数数值齿轮参数数值
头数2法向模数/mm5.08
旋向左旋法向压力角/(°)20
外径/mm110齿数34
螺旋角5°34′30″齿顶圆直径/mm192
容屑槽数10螺旋角/(°)13
容屑槽类型直槽齿宽/mm30

Table 3

Installation positions of temperature sensors and displacement sensors"

传感器安装/检测位置传感器安装/检测位置
T1小立柱外侧T6刀架侧面
T2Z轴拖板丝杠套T7床身上表面
T3Z轴拖板上部T8环境温度
T4立柱Z轴静压导轨S1工作台X方向
T5电主轴轴承侧面S2工作台Y方向

Fig.8

Physical picture of temperature and displacementacquisition module"

Fig.9

Physical picture of current acquisition module"

Table 4

Processing parameter"

t/minn/(r·min-1f/(mm·min-1ap/mm
0~40120126
40~80160147
80~120200168

Fig.10

Three phase current change of spindle"

Fig.11

Change of spindle"

Fig.12

Temperatures of hobbing machine"

Fig.13

Displacement of workbench"

Table 5

K mean clustering-grey relation degree between temperature variable and thermal error"

分组序号K均值聚类分组结果灰色关联度大小
1T1T2T30.7210.9390.735
2T4T70.6880.693
3T5T6T80.7050.6940.687

Fig.14

Prediction and measurement values of X direction"

Fig.15

Residual error of X direction"

Fig.16

Prediction and measurement values of Y direction"

Fig.17

Residual error of Y direction"

Table 6

RMSE of each model"

方向SAMEA-BPMEA-BPPSO-BPGA-BPSAMEA-BP2
X0.37540.50430.72480.92020.5254
Y0.33910.48540.78460.82150.3545

Table 7

Performance comparison of each model"

算 法方 向迭代次数收敛时间/sR2下降梯度
SAMEA-BPX22<0.0010.98460.405
Y27<0.0010.97030.394
MEA-BPX33<0.0010.96340.252
Y27<0.0010.96370.314
PSO-BPX57<0.010.96170.216
Y46<0.010.95640.227
GA-BPX62<0.010.94480.124
Y48<0.010.94950.095
SAMEA-BP2X35<0.0010.98540.301
Y25<0.0010.97190.267

Fig.18

Comparison of generalization performances of X-direction"

Fig.19

Comparison of generalization performances of Y-direction"

1 李国龙, 陶小会, 徐凯, 等. 数控机床转台位置相关几何误差的快速测量与辨识[J]. 吉林大学学报: 工学版, 2021, 51(2): 458-467.
Li Guo-long, Tao Xiao-hui, Xu Kai,et al. Rapid measurement and identification of position dependent geometric errors of CNC machine tool turntable[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 458-467.
2 李彬, 张云, 王立平, 等. 基于遗传算法优化小波神经网络数控机床热误差建模[J]. 机械工程学报, 2019, 55(21): 215-220.
Li Bin, Zhang Yun, Wang Li-ping,et al. Modeling for CNC machine tool thermal error based on genetic algorithm optimization wavelet neural networks[J]. Journal of Mechanical Engineering, 2019, 55(21): 215-220.
3 郭世杰, 张学炜, 张楠, 等. 机床主轴热关键点选择与典型转速热误差预测[J]. 吉林大学学报: 工学版, 2021, 51(1): 1-10.
Guo Shi-jie, Zhang Xue-wei, Zhang Nan, et al. Thermal key point select and error prediction under typical speed of machine tool spindle[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-10.
4 Liang Y, Su H, Lu L, et al. Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(1-4): 635-645.
5 Grama S N, Mathur A, Aralaguppi R, et al. Optimization of high speed machine tool spindle to minimize thermal distortion[J]. Procedia CIRP, 2017, 58:457-462.
6 谢杰, 黄筱调, 方成刚, 等. 磨齿机电主轴热特性及热误差建模[J]. 浙江大学学报: 工学版, 2018, 52(2): 247-254.
Xie Jie, Huang Xiao-diao, Fang Cheng-gang, et al. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(2): 247-254.
7 Liu Y, Wang X F, Zhu X G, et al. Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network[J]. Journal of Mechanical Science and Technology, 2021, 35(1): 281-292.
8 Miao E-M, Gong Y-Y, Niu P-C, et al. Robustness of thermal error compensation modeling models of CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2593-2603.
9 Lei M, Jiang G, Yang J, et al. Thermal error modeling with dirty and small training sample for the motorized spindle of a precision boring machine[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1-4): 571-586.
10 Xiang S, Yang J. Error map construction and compensation of a NC lathe under thermal and load effects[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 645-655.
11 Tang Xian-kang, Zhao Jun, Zhang Zi-jian. Model of cutting forces prediction for gear milling considering the three-dimensional undeformed chip thickness, penetration curve and working angles[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(5/6): 1659-1671.
12 Umasai K, Venkata M, Pbgsn M. Mechanistic models for prediction of cutting forces and power consumption considering chip geometry[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2020, 235(2): 479-488.
13 陈永鹏. 高速干切滚齿多刃断续切削空间成形模型及其基础应用研究[D]. 重庆: 重庆大学机械与运载学院, 2015.
Chen Yong-peng. Spatial forming model of high-sppeed dry hobbong by interrupted cutting with multiple-cutting-edge and its application[D]. Chongqing: College of Mechanical and Vehicle Engineering, Chongqing University, 2015.
14 Sabkhi N, Pelaingre C, Barlier C, et al. Characterization of the cutting forces generated during the gear hobbing process: spur gear[J]. Procedia CIRP, 2015, 31: 411-416.
15 Jomaa W, Songmene V, Bocher P. Predictive analytical modeling of cutting forces generated by high-speed machining of ductile and hard metals[J]. Machining Science and Technology, 2017, 21(3): 335-361.
16 黄颖旭, 李波, 田锡天. 基于主轴电流的铣削力间接监测方法[J]. 计算机集成制造系统, 2022, 28(1): 93-101.
Huang Ying-xu, Li Bo, Tian Xi-tian. Indirect monitoring method of milling force based on spindle current[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 93-101.
17 Mostaghimi H, Park C I, Kang G, et al. Reconstruction of cutting forces through fusion of accelerometer and spindle current signals[J]. Journal of Manufacturing Processes, 2021, 68: 990-1003.
18 Panagiotis S, Harry B, Thanassis S, et al. A method for cutting force estimation through joint current signals in robotic machining[J]. Procedia Manufacturing, 2021, 55: 124-131.
19 Yamada Y, Kakinuma Y. Mode decoupled cutting force monitoring by applying multi encoder based disturbance observer[J]. Procedia CIRP, 2016, 57:643-648.
20 王国权. 数控滚齿机动态误差补偿技术研究[D]. 合肥:合肥工业大学机械工程学院, 2015.
Wang Guo-quan.The Dynamic Error Compensating Technology Research of CNC Gear Hobbing Machine[D]. Hefei: College of Mechanical Engineering,Hefei University of Technology, 2015.
21 李根, 李文辉. 基于思维进化算法的人脸特征点跟踪[J]. 吉林大学学报:工学版, 2015, 45(2): 606-612.
Li Gen, Li Wen-hui. Facial feature tracking on mind evolutionary algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(2): 606-612.
[1] Shi-jie GUO,Xue-wei ZHANG,Nan ZHANG,Guan QIAO,Shu-feng TANG. Thermal key point select and error prediction under typical speed of machine tool spindle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 72-81.
[2] LYU Feng, YANG Yin-sheng, GUO Chang-qing. New approach of criticality analysis of equipment based on improved fuzzy matter-element model [J]. 吉林大学学报(工学版), 2014, 44(01): 111-116.
[3] YAN Zhan-hui, YU Jun-yi . The Survey of Thermal Deformation for Machine Tools [J]. 吉林大学学报(工学版), 2001, (3): 95-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!