Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3478-3485.doi: 10.13229/j.cnki.jdxbgxb.20230172

Previous Articles     Next Articles

Hot spot stress concentration factor for welded skewed-T joints

Xing WEI1(),Yong-qi ZHANG2,Jun-ming ZHAO1,Hui-jun WANG1,Lin XIAO1()   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.China Railway First Survey and Design Institute Group Ltd. ,Xi'an 710043,China
  • Received:2023-02-27 Online:2024-12-01 Published:2025-01-24
  • Contact: Lin XIAO E-mail:we_star@swjtu.edu.cn;xiaolin@swjtu.edu.cn

Abstract:

Using Abaqus finite element software, 150 finite element models of oblique T-shaped welded joints with different angles, plate thickness ratios, and length-to-thickness ratios were established to analyze and obtain the maximum hot spot stress concentration factors (HSCFs) at critical points. Based on the Levenberg-Marquardt algorithm combined with a general global optimization method, the data were fitted to derive simplified and refined formulas for the maximum HSCF. The results indicate that the HSCF at the toe of the obtuse angle side is always greater than that at the acute angle side, and as the angle difference decreases, the difference in HSCFs between the two sides correspondingly diminishes. The HSCF at the toe of the oblique T-shaped joint shows a positive correlation with the angle, plate thickness ratio, and length-to-thickness ratio, reaching its maximum when the angle is 80°, the plate thickness ratio is 2, and the length-to-thickness ratio is 18. The proposed formulas for calculating the maximum HSCF show good agreement with the finite element numerical results, with the correlation coefficient R2 of the refined formula reaching 99.97%.

Key words: bridge engineering, hot spot stress, fatigue, stress concentration factor, oblique T-shaped welded joints

CLC Number: 

  • U441.4

Fig.1

Skewed-T joint in the Split steel box girder"

Fig.2

CJP skewed-T joint geometry and weld construction"

Table 1

Partial design parameters"

接头编号Ta/mmTb/mmLb/mmφ/(°)R/mmΨ/(°)τθ/(°)γ
ST-0.5-30-108161606011500.53010
ST-0.75-40-1212161926011400.754012
ST-1.0-50-14161622460113015014
ST-1.5-60-1624162566011201.56016
ST-2.0-70-18321628860111027018

Fig.3

Details of the finite element model"

Fig.4

Mises stress distribution subjected to axial tension (unit:MPa)"

Fig.5

SCF value for 30°"

Fig.6

SCF value for 80°"

Fig.7

Variation of SCF value with angle at obtuse angle when γ=10"

Fig.8

Variation of SCF value with angle at obtuse angle when γ=18"

Fig.9

Variation of SCF value with angle at acute angle when γ=10"

Fig.10

Variation of SCF value with angle at acute angle when γ=18"

Fig.11

Error comparison between the real and predicted SCF values at obtuse angle of the simplified formula"

Fig.12

Error comparison between the real and predicted SCF values at acute angle of the simplified formula"

Fig.13

Error comparison between the real and predicted SCF values at obtuse angle of the refined formula"

Fig.14

Error comparison between the real and predicted SCF values at acute angle of the refined formula"

Table 2

Comparison of SCF value of weld toes at obtuse angle"

模型有限元计算简化公式精细化公式
ST-0.6-37-134.023.954.03
ST-0.6-45-155.265.155.28
ST-0.6-53-176.586.496.60
ST-1.2-37-137.216.987.09
ST-1.2-45-159.679.189.61
ST-1.2-53-1712.2611.6512.28
ST-1.8-37-139.709.829.63
ST-1.8-45-1513.4412.9613.34
ST-1.8-53-1717.3016.4717.30

Table 3

Comparison of SCF value of weld toes at acute angle"

模型有限元计算简化公式精细化公式
ST-0.6-37-131.791.531.79
ST-0.6-45-153.152.843.12
ST-0.6-53-174.674.484.64
ST-1.2-37-133.093.273.11
ST-1.2-45-155.735.465.71
ST-1.2-53-178.698.198.69
ST-1.8-37-134.064.784.12
ST-1.8-45-157.907.757.93
ST-1.8-53-1712.2311.4412.29
1 郑凯锋,冯霄暘,衡俊霖,等. 钢桥2020年度研究进展[J]. 土木与环境工程学报:中英文,2021,43():53-69.
Zheng Kai-feng, Feng Xiao-yang, Heng Jun-lin, et al. State-of-the-art review of steel bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(Sup.1): 53-69.
2 A. Structural welding codesheet steel [S].
3 吴琛泰. 钢管混凝土桁架焊接节点热点应力集中系数研究[D]. 成都:西南交通大学土木工程学院,2019.
Wu Chen-tai. Study on hot spot stress concentration factor of welded concrete-filled stell tubular truss joints[D].Chengdu: School of Civil Engineering,Southwest Jiaotong University, 2019.
4 Brennan F P, Peleties P, Hellier A K. Predicting weld toe stress concentration factors for T and skewed T-joint plate connections[J]. International Journal of Fatigue, 2000, 22(7): 573-584.
5 Dabiri M, Ghafouri M, Raftar H R R, et al. Neural network-based assessment of the stress concentration factor in a T-welded joint[J]. Journal of Constructional Steel Research, 2017, 128: 567-578.
6 Terán G, Albiter A, Cuamatzi-Meléndez R. Parametric evaluation of the stress concentration factors in T-butt welded connections[J]. Engineering Structures, 2013, 56: 1484-1495.
7 Molski K L, Tarasiuk P. Stress concentration factors for welded plate T-Joints subjected to tensile, bending and shearing loads[J]. Materials, 2021, 14(3): 1-22.
8 陈团海,陈国明.T型焊接管节点应力集中系数数值分析[J].焊接学报,2010,31(11):45-48, 115.
Chen Tuan-hai, Chen Guo-ming. Numerical analysis on stress concentration factors of joints in welded T-tube[J]. Transactions of the China Welding Institution, 2010, 31(11): 45-48, 115.
9 陈娟,聂建国,周成野. 钢管混凝土T形相贯节点应力集中系数研究[J].建筑结构学报,2018,39(3): 149-157.
Chen Juan, Nie Jian-guo, Zhou Cheng-ye. Study on stress concentration factor of concrete-filled steel tubular T-joints[J]. Journal of Building Structures, 2018, 39(3): 149-157.
10 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J].吉林大学学报: 工学版,2019,49(6): 1891-1899.
Yang De-lei, Tong Le-wei. Calculation formula of SCF for CHS-CFSHS welded T-joints with brace under axial tension[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1891-1899.
11 卫星,赵骏铭,肖林,等. 钢管混凝土桁架焊接型管节点热点应力集中系数研究[J].中国铁道科学,2022,43(2): 1-9.
Wei Xing, Zhao Jun-ming, Xiao Lin, et al. Hot spot stress concentration factor of welded tubular T-ointsin concrete-filled steel tube truss[J]. China Railway Science, 2022, 43(2): 1-9.
12 揭志羽,李亚东,卫星,等. 复杂应力场下焊接接头疲劳寿命评估的热点应力法[J].中国公路学报,2017,30(5): 97-103.
Zhi-yu Jie, Li Ya-dong, Wei Xing, et al. Hot spot stress method for fatigue life assessment of welded joints under complex stress fields[J]. China Journal of Highway and Transport, 2017, 30(5): 97-103.
13 IIW Document IIW-1823-07 ex XIII-2151r4-07/ XV-1254r4-07 recommended fatigue design procedure for welded hollow section joints [S].
14 Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
15 李松柏, Stefan Kirchberg,谢磊,等. PP+FeSi复合材料流变性能测试及数值模拟[J].高分子材料科学与工程,2010,26(3): 164-167, 171.
Li Song-bai, Stefan Kirchberg, Xie Lei, et al. Rheological Experiment and numerical simulation of PP+FeSi composite materials[J]. Polymeric Materials Science and Engineering, 2010, 26(3): 164-167, 171.
16 范金龙,宋国良,宋维健,等. 内嵌逆流柱型风帽阻力特性冷态试验研究[J].动力工程学报,2015,35(7): 531-536.
Fan Jin-long, Song Guo-liang, Song Wei-jian, et al.Experimental study on resistance characteristics ofInternal counterflow wind caps with inner tubes[J]. Journal of Chinese Society of Power Engineering, 2015, 35(7): 531-536.
17 舒志乐,刘保县,黄山,等. 软岩非线性黏弹塑性蠕变模型及参数识别[J]. 采矿与安全工程学报,2017,34(4): 803-809.
Shu Zhi-le, Liu Bao-xian, Huang Shan, et al. Nonlinear viscoelasto-plastic creep model of soft rock and its parameters identification[J]. Journal of Mining & Safety Engineering, 2017, 34(4): 803-809.
18 李萍,念腾飞,魏定邦,等. FTIR定量分析方法与老化沥青流变参数新探[J]. 华中科技大学学报: 自然科学版, 2018, 46(2): 34-39.
Li Ping, Teng-fei Nian, Wei Ding-bang, et al. Quantitative analysis method for FTIR and exploration on rheological parameters of aging asphalt binders[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(2): 34-39.
[1] Yong-xin SUN,Peng-zhen LIN,Zi-jiang YANG,Wei JI. Calculation method for crack width of UHPC beams considering bond slip effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2600-2608.
[2] Bao-dong LIU,Fang LI,Xiao-xi WANG,Meng GAO. Flexural stiffness and bearing capacity of corrugated steel plate composite structures reinforced by concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2502-2510.
[3] Yu-xin XUE,Yong-jun ZHOU,Ye-lu WANG,Kai-xiang FAN,Yu ZHAO. Application of dynamic load allowance test method of simply supported girder bridge based on suspension hammer system [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2557-2567.
[4] Xue-lian GUO,Wan-shui HAN,Tao WANG,Kai ZHOU,Xiu-shi ZHANG,Shu-ying ZHANG. Assessment method of resistant overturning stability safety factors of curved bridge under customized transport vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2229-2237.
[5] Lin XIAO,Huan-bo WEI,Xing WEI,Zhi-rui KANG. Numerical analysis on cracking behavior of concrete slab due to corrosion expansion of stud connector in steel-concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1958-1965.
[6] Chun-lei ZHANG,Chang-yu SHAO,Qing-tian SU,Chang-yuan DAI. Experimental on positive bending behaviour of composite bridge decks with steel-fiber-reinforced concrete and longitudinal bulb-flat ribs [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1634-1642.
[7] Han-hui HUANG,Kang-ming CHEN,Qing-xiong WU. Flexural behavior of composite continuous girders with concrete-filled steel tubular truss chords [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1665-1676.
[8] Chang-jiang SHAO,Hao-meng CUI,Qi-ming QI,Wei-lin ZHUANG. Longitudinal seismic mitigation of near⁃fault long⁃span RC soft⁃lighten arch bridge based on viscous damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1355-1367.
[9] Qiu ZHAO,Peng CHEN,Yu-wei ZHAO,Ao YU. Overall mechanical performance of jointless bridges with arch structure behind abutment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1016-1027.
[10] Hong ZHANG,Zhi-wei ZHU,Tian-yu HU,Yan-feng GONG,Jian-ting ZHOU. Bridge bolt defect identification method based on improved YOLOv5s [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 749-760.
[11] Liang XU,Jing-hou XIAO,Wan-wan SONG,Song ZHOU. Three⁃point bending fatigue properties of carbon fiber composite laminates [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 400-409.
[12] Zhi-qiang HAN,Gang XIE,Ya-juan ZHUO,Zuo-long LUO,Hua-teng LI. Vibration response of continuous girder bridge based on wheel⁃deck coherent excitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 436-444.
[13] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
[14] Xie-li ZHANG,Chong WU,Qing-tian SU. Experiment on load capacity of profiled steel sheeting-concrete composite bridge decks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2870-2883.
[15] Qing-wei HUANG,Qing-xiong WU,Bao-chun CHEN,Kang-ming CHEN,Zhi-wei YE. Calculation method of out-of-plane elastic stability bearing capacity for concrete-filled steel tubular arch bridges with circular tube ribs [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2930-2940.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .