Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 221-229.doi: 10.13229/j.cnki.jdxbgxb.20240127

Previous Articles    

Viscoelastic behavior of carbon nano powder modified asphalt based on time-temperature equivalence

Feng-chun GUO1(),Hai-peng BI2(),Hai-tao WANG2,Shu-zheng WU2,Hong-yu YANG2   

  1. 1.China First Highway Engineering Company Limited,Beijing 100024,China
    2.College of Transportation,Jilin University,Changchun 130022,China
  • Received:2024-01-31 Online:2025-01-01 Published:2025-03-28
  • Contact: Hai-peng BI E-mail:guofc16@163.com;bihp@jlu.edu.cn

Abstract:

In order to understand the high and low temperature viscoelastic behavior of carbon nano powder modified asphalt, this paper will analyze the creep and relaxation behavior of carbon nano powder modified asphalt based on multi-temperature and multi-stress creep recovery test and low-temperature relaxation test, combined with the principle of time-temperature equivalence. Subsequently, the low-temperature relaxation behavior of carbon nano powder modified asphalt was inverted and verified by combining the Laplace convolution integral. The results show that the carbon nano powder modified asphalt has stronger elastic stability and lower stress sensitivity at low and medium temperatures. The short-term creep flexural volume is small, the long-term creep flexural volume grows significantly, and the stress relaxation effect is significant. The Pearson correlation between the inverse relaxation modulus method proposed in this paper and the modulus curve of low-temperature relaxation test is 0.911. This study will provide experimental and theoretical references for the application of carbon nano powder modified asphalt, and at the same time, provide an effective inverse relaxation behavior of low-temperature relaxation of carbon nano powder modified asphalt.

Key words: road engineering, carbon nano powder modified asphalt, viscoelastic behavior, time-temperature equivalence principle, Laplace convolution integral

CLC Number: 

  • U416

Table 1

The fundamental properties of 90# matrix asphalt"

性能参数单位技术 要求检测 指标

方法

试验

针入度25 ℃, 100 g, 5 s0.1 mm80~10088GB/T 4509
延度15 ℃cm>100>100GB/T 4508
软化点42~5545.0GB/T 4507
闪点(开)≥230256GB/T 267
溶解度%≥9999.60GB/T 11148
蜡含量%≤3.02.2SH/T 0425
密度25 ℃kg/m3-1 005.4GB/T 8928
163 ℃薄 膜烘箱 试验5 h质量变化%≤1.0-0.097GB/T 5304
针入度比25 ℃%≥5070GB/T 4509
延度15 ℃cm≥4069GB/T 4508

Fig.1

Carbon nano powder"

Table 2

Composition of carbon nano powder"

化学成分质量分数化学成分质量分数
C≥99.9Mn0.002
Al0.002Na0.002
Fe0.001Cu0.003
Ca0.002Ni0.002
Mo0.001Pb0.002
Zr0.001Si0.003

Fig.2

Dynamic shear rheometer"

Fig.3

Creep recovery characteristic curve"

Fig.4

Creep-recovery indexes at different temperatures and stress levels"

Fig.5

Rdiff and Jnrdiff results"

Fig.6

Creep compliance principal curve"

Table 3

Shift factor and WLF equation parameters of carbon nano powder modified asphalt creep curve"

试验温度/℃WLF方程参数
2030405060C1C2R2
014.18619.58721.50921.904-27.3508.7530.996 5

Table 4

Prony series identification results of creep compliance principal curve of carbon nano powder modified asphalt"

i=1i=2i=3i=4i=5i=6i=7
Ji/kPa-13.82×10-32.09×10-24.37×10-25.56×10-12.524 725.814 102.59
Ti/s1.00×1011.00×1051.00×10101.00×10151.00×10201.00×10251.00×1030
Je/kPa-12.71×10-2
Ji/kPa-18 830.92
R2/0.996 5

Fig.7

Creep compliance and relaxation moduluscurves of carbon nano powder modifiedasphalt under -10 ℃"

Fig.8

Stress-strain curve of low-temperature relaxation"

Fig.9

Relaxation modulus curve"

Table 5

Prony series identification results of relaxation modulus curve of carbon nano powder modified asphalt"

i=1i=2i=3i=4i=5i=6i=7
Ei/kPa9.75×10-139.73×10-139.71×10-1360.5750.278.519.99×10-13
Ti/s1.00×10-31.00×10-21.00×10-111.00×1011.00×1021.00×103
Ee/kPa1.03
∑Ei/kPa119.35
R2/0.981 2

Fig.10

Comparison of relaxation modulus curvesobtained by Laplace inversion and tests"

1 Bobbili A, Kollipara S K, Mallikarjuna V, et al. Comparative study on asphalt mixture with nano materials and polymer[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1112(1): No.012019.
2 Singh B, Prasad D, Kumar A, et al.Use of nano-materials to enhance the properties of asphalt mixes[J]. Materials Today: Proceedings, 2022, 65(2): 1861-1866.
3 徐衍青,李瑞明,郑传峰. 纳米材料在沥青路面中的应用综述[J]. 中外公路, 2021, 41(1): 206-214.
Xu Yan-qing, Li Rui-ming, Zheng Chuan-feng. Review on application of nanomaterials in asphalt pavement[J]. Journal of China & Foreign Highway, 2021, 41(1): 206-214.
4 俞才华. 碳纳米材料与SBS改性沥青相互作用及调控研究[D]. 郑州:河南工业大学土木工程学院, 2022.
Yu Cai-hua. Study on the interaction between carbon nanomaterials and SBS modified asphalt and the regulation method[D]. Zhengzhou: School of Civil Engineering, Henan University of Technology, 2022.
5 Amini A, Ziari H, Saadatjoo S A, et al. Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder[J]. Construction and Building Materials, 2021, 267: No.120946.
6 Rezaei S, Khordehbinan M, Fakhrefatemi S M R. The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt[J]. Petroleum Science and Technology, 2017, 35(6): 553-560.
7 Xue Y, Liu C, Lyu S, et al. Research on rheological properties of CNT-SBR modified asphalt[J]. Construction and Building Materials, 2022, 361: No.129587.
8 Di H, Zhang H, Yang E, et al. Usage of nano-TiO2 or nano-ZnO in asphalt to resist aging by NMR spectroscopy and rheology technology[J]. Journal of Materials in Civil Engineering, 2023, 35(1): No.0004570.
9 沈雪婷,王矿,张瑞芝,等. 自分散纳米碳粉的制备及性能[J]. 印染助剂, 2021, 38(6): 31-33.
Shen Xue-ting, Wang Kuang, Zhang Rui-zhi, et al. Preparation and properties of self-dispersing nano-carbon powder[J]. Textile Auxiliaries, 2021, 38(6): 31-33.
10 Huang S, Liang C. Evaluation of the engineering properties of powdered activated carbon amendments in porous asphalt pavement[J]. Processes, 2021, 9(4): No.9040582.
11 李诗琦,李闯民,李元元. 回收碳粉改性沥青制备参数及性能研究[J]. 石油沥青, 2016, 30(6): 25-30.
Li Shi-qi, Li Chuang-min, Li Yuan-yuan. Preparation parameters and performance study of recycled carbon powder modified asphalt[J]. Petroleum Asphalt, 2016, 30(6): 25-30.
12 孟旭,谢祥兵,李广慧,等. 基于正交灰关联分析的纳米碳粉/橡胶粉复合改性沥青制备工艺试验研究[J]. 硅酸盐通报, 2019, 38(8): 2642-2649.
Meng Xu, Xie Xiang-bing, Li Guang-hui, et al. Experimental study on preparation technology of nano-carbon powder/rubber powder composite modified asphalt based on orthogonal grey relation analysis[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2642-2649.
13 Amirbayev Y, Yelshibayev A, Nugmanova A. Characterization of asphalt bitumens and asphalt concretes modified with carbon powder[J]. Case Studies in Construction Materials, 2022, 17: No. e01554.
14 王明伟,谢祥兵,李广慧,等. 基于动态力学的纳米碳粉-橡胶粉-SBS改性沥青相态结构分析[J]. 硅酸盐通报, 2021, 40(7): 2444-2453.
Wang Ming-wei, Xie Xiang-bing, Li Guang-hui, et al. Phase structure analysis of nano carbon powder-rubber powder-SBS modified asphalt based on dynamic mechanics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2444-2453.
15 Wang Y F, Hong L, Liu Z M, et al. Rheological performance evaluation of activated carbon powder modified asphalt based on TOPSIS method[J]. Case Studies in Construction Materials, 2024, 20: No.e02963.
16 ASTM D7405. Standard test method for multiple stress creep and recovery(M ) of asphalt binder using a dynamic shear rheometer[S].
17 杨作杰. 橡胶沥青混合料性能试验研究[J]. 交通世界(建养·机械), 2015(8): 100-101.
Yang Zuo-jie. Experimental study on rubberized asphalt mixture performance[J]. TranspoWorld, 2015(8): 100-101.
18 Maturana L G, López A O. Determination and assessment of the linear viscoelastic range and viscoelastic properties of modified asphalt and mastics under different temperature conditions[J]. Construction and Building Materials, 2024, 420: No.135606.
19 Abate J, Valkó P P. Multi-precision Laplace transform inversion[J]. International Journal for Numerical Methods in Engineering, 2004, 60(5): 979-993.
20 Saboo N, Sukhija M. Evaluating the suitability of nanoclay-modified asphalt binders from 10℃ to 70℃[J]. Journal of Materials in Civil Engineering, 2020, 32(12): No.04020393.
21 Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part I——a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999, 36(11): 1653-1675.
22 Schapery R A, Park S W. Methods of interconversion between linear viscoelastic material functions. Part II——an approximate analytical method[J]. International Journal of Solids and Structures, 1999, 36(11): 1677-1699.
23 茹楠. 基于分子模拟的再生剂对热再生沥青混合料性能影响研究[D]. 重庆:重庆交通大学土木工程学院, 2023.
Ru Nan. Study on the influence of recycler based on molecular simulation on the performance of hot-recycled asphalt mixture[D]. Chongqing: School of Civil Engineering, Chongqing Jiaotong University, 2023.
[1] Wan-feng WEI,Ling-yun KONG,Wei-an XUAN,Fan YANG,Peng GUO. Review of characteristics of asphalt foaming and moisture sensitivity of warm mix mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 20-35.
[2] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[3] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[4] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[5] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[6] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[7] Jin XU,Zheng-huan CHEN,Qi-shuo LIAO,Zhan-ji ZHENG,He-shan ZHANG. Mental workload of drivers at high-density interchanges of freeways based on ECG data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2807-2818.
[8] Hong-zhou ZHU,Chun-li SU,Nai-peng TANG,Jun-yao WEI,Hong-jun SUN. Sampling and quantitative analysis method of emissions from crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2922-2929.
[9] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[10] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
[11] Zhuang WANG,Zhen-gang FENG,Dong-dong YAO,Qi CUI,Ruo-ting SHEN,Xin-jun LI. Research progress of conductive asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 1-21.
[12] Sheng-qian ZHAO,Zhuo-hong CONG,Qing-long YOU,Yuan LI. Adhesion and raveling property between asphalt and aggregate: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2437-2464.
[13] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[14] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[15] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!