Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (3): 866-876.doi: 10.13229/j.cnki.jdxbgxb.20230550

Previous Articles     Next Articles

Fatigue life prediction of brake treads for C80 trains with long downhill cycles

Jian-feng SONG1(),Xin-lei HUANG2,Si-ran WANG2,Guang-yao XIE2,Yong-gang DONG1()   

  1. 1.School of Mechanical Engineering,Changshu Institute of Technology,Changshu 215500,China
    2.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China
  • Received:2023-10-11 Online:2025-03-01 Published:2025-05-20
  • Contact: Yong-gang DONG E-mail:jfsong2003@163.com;d_peter@163.com

Abstract:

High-temperature tensile tests were used to establish the material mechanics parameters of CL60 wheel steel in the 26~500 ℃ temperature range, considering the convective heat transfer, wheel-rail contact heat transfer, thermal radiation, driving resistance, taking advantage of work-energy conversion relationships with Hertz contact theory to obtain the heat flow load, normal load, and tangential load. A wheel finite element model was developed in Abaqus to predict the fatigue life of wheel treads during the braking process of C80 trains with lengthy downhill cycles. The subroutine is created to manage the load with heat transfer qualities for rotational loading of the tread surface in order to determine the temperature of the tread surface and the Mises stress-time history. It also examines the thermal-mechanical interaction of the braking process for the lengthy downhill cycle of the train. By investigating the effect of gate tile pressure on fatigue life, the fatigue life procedures were developed based on the N.E. damage and R.W. damage formulas to evaluate the fatigue life of the tread surface under two types of damage. The results show that after the same cycle, the tread temperature and Mises stress history stabilize. The tread hazard point is the wheel-rail contact center, with the two different types of damage, the percentage inaccuracy of wheel service revolutions is 1.28%. The higher the pressure of the brake shoe, the higher the temperature of the danger point, the higher the Mises stress, and the shorter the fatigue life.

Key words: mechanical design, periodic braking, fatigue life of tread, wheel service revolutions, N.E. damage, R.W. damage

CLC Number: 

  • U211.5

Fig.1

Three-dimensional model of wheel"

Fig.2

Tread node-set "Set-1""

Fig.3

Tensile test of CL60 steel at high temperature"

Table 1

Mechanical and physical properties of CL60 steel"

温度/℃弹性模量/GPa屈服强度/MPa抗拉强度/MPa断面收缩率/%

比热容/

[J·(kg·℃)-1

内部导热率/[W·(m·℃-1)]热膨胀系数/(10-5·℃-1
26225.6605.6812.531.9470511.033
100203.3556.6768.137.2490491.112
200176.1507.8718.142.6530451.207
300152.6465.6662.147.4570421.226
400132.6437.8611.653.4620381.331
50097.3390.3567.859.0680351.392

Fig.4

Flow chart of Abaqus and subroutine secondary development"

Fig.5

Diagrams of rotation of load and heat properties"

Table 2

Damage parameter values at different temperatures"

温度/℃σf'/MPaεf'b'c'K'/MPan'
261 246.20.234-0.129-1.0821 481.30.119
1001 222.40.286-0.136-1.1381 419.70.119
2001 185.60.346-0.143-1.1961 345.60.119
3001 128.00.406-0.149-1.2461 256.10.119
4001 081.90.489-0.156-1.3041 178.40.119
5001 039.20.613-0.162-1.4121 099.40.115

Fig.6

Fitting curves between elastic modulus or damage parameters and temperature"

Fig.7

Flow chart of fatigue life program development"

Table 3

Supplementary table of train braking parameters"

初始温度/℃车轮承重量/kg初始制动速度v0/(km·h-1缓解速度/(km·h-1制动减速度ac/(m·s-2
2612 83080400.12

Fig.8

Speed or mileage-time diagram"

Fig.9

Cloud diagram of wheel temperature distribution at the end of the fifth cycle braking stage"

Fig.10

Axial distribution of temperature in the fifth cycle"

Fig.11

Temperature distribution of tread in the six cycles"

Fig.12

Cloud diagram of wheel Mises Stress distribution at the end of the fifth cycle braking stage"

Fig.13

Mises stress axial distribution in the fifth cycle"

Fig.14

Mises stress distribution of tread in six cycles"

Fig.15

Stress-strain amplitude curve at danger point"

Fig.16

Axial distribution of fatigue damage and wheel cycles"

Fig.17

Axial distribution of temperature at no contact"

Fig.18

Axial distribution of Mises stress at contact center"

Table 4

Damage results under different brake pressures"

闸瓦压力

/kN

制动减速度

/(m·s-2

温度趋于稳定的循环次数损伤模型

最大疲劳

损伤

疲劳循环次数/次车轮服役转数/转

疲劳寿命

Nf /h

60.074N.E.0.3362.9756 3382.49
R.W.0.3323.0157 0052.51
80.125N.E.0.3712.7051 0922.25
R.W.0.3662.7351 7102.27
100.175N.E.0.4012.5047 2802.08
R.W.0.3962.5347 8872.11
120.226N.E.0.4382.2843 2931.90
R.W.0.4332.3143 7361.92
1 王延朋, 丁昊昊, 邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术, 2020, 49(5): 121-122.
Wang Yan-peng, Ding Hao-hao, Zhou Qiang, et al. Research progress on rolling contact fatigue of railway wheel treads[J]. Surface Technology, 2020, 49(5): 121-122.
2 黄龙文, 李正美, 安琦. 轮轨滚动接触疲劳寿命的计算方法[J]. 华东理工大学学报: 自然科学版, 2018, 44(6): 918-927.
Huang Long-wen, Li Zheng-mei, An Qi. Calculation method of wheel/rail rolling contact fatigue life[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2018, 44(6): 918-927.
3 黄龙文. 轮轨滚动接触力学分析及疲劳寿命预测方法分析[D].上海: 华东理工大学机械学院, 2018.
Huang Long-wen. Mechanics analysis and fatigue life prediction method for wheel/rail rolling contact[D].Shanghai: School of Mechanical Engineering, East China University of Science and Technology, 2018.
4 范新光. 列车车轮滚动接触疲劳裂纹萌生及扩展研究[D].北京: 北京交通大学机械与电子控制工程学院, 2019.
Fan Xin-guang. Study of fatigue crack initiation and propagation of railroad wheel under rolling contact[D].Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2019.
5 赵吉中,徐祥,丁立,等. 高速列车车轮踏面滚压强化有限元分析[J]. 西南交通大学学报, 2020, 55(6): 1338-1345.
Zhao Ji-zhong, Xu Xiang, Ding Li, et al. Finite element analysis of rolling strengthening process for wheel tread of high-speed trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1338-1345.
6 刘颍宾. 列车车轮踏面滚动接触疲劳损伤机制研究[D]. 合肥: 中国科学技术大学化学与材料科学学院, 2020.
Liu Ying-bin. Research on rolling contact fatigue damage mechanism of train wheel tread[D]. Hefei: School of Chemistry and Materials Science, University of Science and Technology of China, 2020.
7 杨柳青,胡明,赵德明,等. CRH5动车组车轮低温概率疲劳寿命研究[J]. 中国机械工程, 2018, 29(9): 1115-1118.
Yang Liu-qing, Hu Ming, Zhao De-ming, et al. Research on probabilistic fatigue life of CRH5 EMU wheels at low temperature[J]. China Mechanical Engineering, 2018, 29(9): 1115-1118.
8 扬大巍. CRH5型动车组轮轨滚动接触行为及疲劳寿命研究[D].兰州: 兰州理工大学材料科学与工程学院, 2017.
Yang Da-wei. Study on rolling contact behavior and fatigue life of CRH5 type EMU[D].Lanzhou: School of Materials Science and Engineering, Lanzhou University of Technology, 2017.
9 Chong T, Liu X L, Wu S, et al. Study on damage tolerance and remain fatigue life of shattered rim of railway wheels[J]. Engineering Fatigue Analysis, 2021, 12(2): 20-28.
10 Nejad R M, Berto F. Fatigue fracture and fatigue life assessment of railway wheel using non-linear model for fatigue crack growth[J]. International Journal of Fatigue, 2021, 30(3): 13-15.
11 Lima E A, Martins T S, Santos A A. Effect of manufacturing residual stress on the fatigue life of railway wheels for heavy-haul transportation[J]. Procedia Structural Integrity, 2019, 33(8): 246-253.
12 孔昌昌, 秦凤明, 张晓峰, 等. 含Mo元素CL60钢CCT曲线的测定及分析[J]. 材料热处理学报, 2019, 40(8): 139-141.
Kong Chang-chang, Qin Feng-ming, Zhang Xiao-feng, et al. Determination and analysis of CCT curve of CL60 steel containing Mo element[J]. Journal of Materials Heat Treatment, 2019, 40(8): 139-141.
13 马红萍. 重载列车长大下坡制动过程优化控制研究[D]. 南昌: 华东交通大学电气与自动化工程学院, 2019.
Ma Hong-ping. Research on optimal braking process control of heavy-haul train on long steep down grade[D]. Nanchang: School of Electrical and Automation Engineering, East China Jiaotong University, 2019.
14 卢立丽. 货车车轮踏面制动热损伤研究[D]. 北京: 北京交通大学机械与电子控制工程学院, 2007.
Lu Li-li. Research on tread brake heat injury of freight wheel[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2007.
15 王铎, 孙毅, 程靳. 理论力学[M]. 北京: 高等教育出版社, 2016.
16 雷国军. 重载列车车轮表面对流传热特性的数值研究[D]. 兰州: 兰州交通大学车辆工程学院, 2020.
Lei Guo-jun. Numerical study on convective heat transfer characteristics on the wheel surface of heavy-duty train[D]. Lanzhou: School of Vehicle Engineering, Lanzhou Jiaotong University, 2020.
17 包辰铭. 重载列车踏面制动车轮温度场分析及制动故障诊断研究[D].北京: 北京交通大学机械与电子控制工程学院, 2020.
Bao Chen-ming. Temperature field analysis of brake wheels on heavy-duty train treads research on brake fault diagnosis[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2020.
18 Chen S, Zhao G T, Wang H Y, et al. Study of wheel wear influenced by tread temperature rising during tread braking[J]. Wear, 2019, 32(3): 1-10.
19 李辉平, 贺连芳, 赵国群,等. 硼钢B1500HS界面传热系数与压力关系的研究[J]. 机械工程学报, 2013, 49(16): 78-82.
Li Hui-ping, He Lian-fang, Zhao Guo-qun, et al. Research on the surface heat transfer coefficient depending on surface pressure of boron steel B1500HS[J]. Journal of Mechanical Engineering, 2013, 49(16): 78-82.
20 孙晓冉,宋月,谷秀锐,等. 汽车用SPHC热轧薄钢板的低周疲劳特性[J]. 机械工程材料, 2021, 45(4): 58-60.
Sun Xiao-ran, Song Yue, Gu Xiu-rui, et al. Low cycle fatigue characteristics of SPHC hot-rolled steel sheet for automobile[J]. Materials for Mechanical Engineering, 2021, 45(4): 58-60.
21 张然治. 疲劳试验测试分析理论与实践[M]. 北京: 国防工业出版社, 2011.
22 秦大同. 现代机械设计手册[M]. 北京: 化学工业出版社, 2011.
23 黄协思. 疲劳约束下航空发动机涡轮盘结构优化设计[D]. 成都: 电子科技大学机械与电气工程学院, 2020.
Huang Xie-si. Structural optimization design of aero engine turbine disc under fatigue constraint[D]. Chengdu: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2020.
24 卢碧红, 徐超, 郭宏远. C80型铁路货车制动装置运用性能预测[J]. 交通运输工程学报, 2021, 21(6): 289-297.
Lu Bi-hong, Xu Chao, Guo Hong-yuan. Operation performance prediction of C80 railway freight car braking device[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 289-297.
[1] Shu-kun WANG,Yu-ze FENG,Jing-ran ZHANG,Xin-ming ZHANG,Long ZHENG. Analysis on decontamination performance of lower lip structure of imitation scavenger [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 392-400.
[2] Xian-zhen HUANG,Rui YU,Hui-zhen LIU,Ji-wu TANG. Spindle vibration reliability analysis considering bearing nonlinear restoring force [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 116-124.
[3] Chen WANG,Te LUO,Qian-qian HUI,Zhong-hao WANG,Fang-fang WANG. Design and verification of electromechanical system for docking and locking of modular flying vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2130-2140.
[4] Yang LIU. Simulation and experiment of elastic roughing for rubber shoe [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2167-2173.
[5] Lei WANG,Dong-xia LI,Song ZHOU,Li HUI,Zhen-xin SHEN. Fatigue crack propagation behavior and life prediction of 2024-O aluminum alloy FSW joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1563-1569.
[6] Yang LIU,Tao JIANG. Interference calculation model of Hooke joint of 6-DOF platform considering installation angle [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1519-1527.
[7] Xiao-dan TAN,Yong-peng WANG,Robert Hall,Tian-shuang XU,Qing-xue HUANG. Haul truck dump body optimization for autonomous shovel loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1227-1236.
[8] Shi-jun WANG,Guan-wei LUO. Periodic motion transition characteristics of a vibro-impact system with multiple impact constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 902-916.
[9] Wei SUN,Jun YANG. Finite element modeling and vibration reduction analysis of cylindrical shell structures with equal⁃angle attachment of piezoelectric shunt patches [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 365-374.
[10] Bin HU,Yi-quan CAI,Xin LUO,Zi-bin MAO,Jun-wei LI,Meng-yu GUO,Jian WANG. Theory and experiment of high⁃speed seed filling in limited gear⁃shaped side space based on seeds group stress [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 574-588.
[11] Jian-xing YU,Ming-xiu WEI,Yang YU,Yu-peng CUI,Yu PAN. Reliability-based topology optimization and engineering design of stiffened plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2781-2791.
[12] Ya-bing CHENG,Ze-yu YANG,Yan LI,Li-chi AN,Ze-hui XU,Peng-yu CAO,Lu-xiang CHEN. Vibration and noise characteristics base on timing silent chain system of hybrid electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2465-2473.
[13] Jia-yi WANG,Xin-hui LIU,Zhan WANG,Jin-shi CHEN,Ya-fang HAN,Yu-qi WANG. Flow characteristics analysis of constant flow control valve based on AMESim [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2499-2507.
[14] Yan YANG,Yu-qing SHI,Xiao-rong ZHANG,Guan-wei LUO. Dynamic stability analysis of a amplitude⁃limited vibration system with multiple rigid constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 364-375.
[15] Jian-feng SONG,Xin-lei HUANG,Shuai YI,Zhen-xi YANG,Yong-gang DONG,Shu-lin LI. Temperature field and stress-strain distribution of tread during train braking [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2773-2784.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!