Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1227-1236.doi: 10.13229/j.cnki.jdxbgxb.20220814

Previous Articles    

Haul truck dump body optimization for autonomous shovel loading

Xiao-dan TAN1(),Yong-peng WANG2,Robert Hall3,Tian-shuang XU1(),Qing-xue HUANG4   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Mining Equipment and Intelligent Manufacturing,Taiyuan Heavy Industry Co. ,Ltd. ,Taiyuan 030024,China
    3.Department of Mining Engineering and Management,South Dakota School of Mines and Technology,Rapid City 57701,USA
    4.College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2022-06-29 Online:2024-05-01 Published:2024-06-11
  • Contact: Tian-shuang XU E-mail:nanlingTXD@163.com;xts@jlu.edu.cn

Abstract:

To reduce the difficulty in autonomous loading operations, a mining haul truck dump body optimization method for payload balancing is constructed. Firstly, a differential iterative algorithm for reconstruction of material pile in dump body was built for calculation of center of gravity. Secondly,based on such calculation algorithm, the discrete element method (DEM) simulation for loading operation was constructed and validated. Thirdly, the influence of dump body structure on position of piled material gravity center was studied using DEM simulation experiments. At last, an optimization on dump body structure was accomplished with the object of payload balancing in cross section and the restraints of longitudinal payload distribution, safety and capacity. The comparison results indicate that the optimized dump body can generate more balanced payload distribution in extreme loading positions. Besides, it has larger loading area and higher operation efficiency.

Key words: mechanical design and theory, autonomous loading, mining haul truck, payload distribution, dump body optimization

CLC Number: 

  • U469.4

Fig.1

Unbalanced payload distribution and frame failure"

Fig.2

Coordinate system of mining haul truck body"

Fig.3

Differential plane line determination algorithm"

Fig.4

Payload distribution measurement system"

Fig.5

Profile of material pile measurement system"

Fig.6

Loading positions for calibration tests"

Table 1

Measurement and calculation results comparison"

装卸位置数据Msum/kgx/mmy/mmz/mm
1测量值6.6924.6564.81-
计算值6.5324.9564.0763.79
ea0.160.300.74-
er/%2.391.221.14-
2测量值7.814.6387.45-
计算值7.934.5387.8570.00
ea0.120.090.41-
er/%1.541.940.47-
3测量值5.06-26.75117.19-
计算值5.20-26.55117.3460.23
ea0.140.200.15
er/%2.770.750.13-
P01测量值7.941.7465.35-
计算值8.031.7065.9870.02
ea0.090.040.63-
er/%1.132.300.96-
P02测量值7.300.7768.92-
计算值7.450.7669.6069.97
ea0.150.010.68
er/%2.051.300.99-

Table 2

Parameter setup for DEM simulation"

颗粒类型真实形状仿真颗粒质量分数/%
针片状20
棱锥状64
立方体16

Fig.7

Material pile shape under different loading conditions"

Table 3

Comparison between DEM simulation and tests"

位置数据θ1/(°)θ2/(°)θ3/(°)θ4/(°)M/kgx/mmy/mmz/mm
1实测332525357256464
仿真332526326255866
ea00131062
er/%0048.614.309.43.1
2实测20262017858870
仿真22282019848569
ea22020131
er/%107.7011.80203.41.4
3实测273316275-2711760
仿真283417245-2712661
ea11130091
er/%3.736.311.1007.71.7
P01实测28222020826670
仿真27222020826471
ea10000021
er/%3.60000031.4
P02实测26231921717070
仿真26221821817170
ea01101010
er/%04.35.3014.301.40

Table 4

Parameter setup for DEM simulation"

参数符号数值单位
剪切模量EG107Pa
泊松比κr0.25-
物料密度μρ2652kg/m3
恢复系数(颗粒-颗粒)Cp0.15-
恢复系数(颗粒-刚体)Cw0.5-
静摩擦系数(颗粒-颗粒)fs0.56-
滚动摩擦系数(颗粒-颗粒)fr0.1-
静摩擦系数(颗粒-刚体)?s0.7-
滚动摩擦系数(颗粒-刚体)?r0.15-

Fig.8

Mechanism for haul truck body optimization"

Fig.9

Loading experiments in cross section"

Fig.10

Loading experiments in longitudinal section"

Table 5

Simulation results in cross section"

x/mmα=0°α=10°α=20°α=30°
β=0°-42.1037-40.4551-34.5286-30.7583
β=15°-36.0689-34.9911-29.7266-29.9357
β=30°-27.5441-28.562-25.5524-26.6968
β=45°-24.3589-23.3156-23.3531-23.3987
z/mmα=0°α=10°α=20°α=30°
β=0°49.956755.020760.701566.4349
β=15°50.887456.914260.998566.0667
β=30°54.909458.616761.814766.7795
β=45°65.454266.840265.583467.3634

Table 6

Fitting parameters for the functions in cross section"

ip00p10p01p20p11p02R2
x-29.812.0795.272-0.032-1.726-0.2660.97
z59.204.2733.0780.114-2.1701.6970.97

Fig.11

Dump body before and after optimization"

Table 7

Parameters of original and optimized truck body"

参数α1/(°)α2/(°)H/mmB/mmβ1/(°)β2/(°)L/mm
优化前0.00.010525012.065.0311
优化后25.20.01052509.668.4311

Table 8

Change of center of gravity in truck body"

卸料位置Gx /mmGy /mmGz /mm总质量/kg
原型优化原型优化原型优化原型优化
125.0417.4358.4066.1665.9170.725.966.00
23.922.9384.9689.7868.8674.527.907.73
3-26.86-20.04129.99136.5060.5359.614.764.72

Table 9

Payload distribution on suspensions"

悬架载荷分布装卸位置1装卸位置3
优化前优化后优化前优化后
左前27.2723.123.412.99
右前12.9813.967.615.37
差异14.299.164.202.38
左后49.7045.9912.8321.49
右后10.0616.9376.1470.14
差异39.6429.0663.3148.65

Fig.12

R-v relation based on Gz in dumping position 1 and 2"

Fig.13

Definition for dumping area"

Table 10

Dumping area comparison"

数值优化前优化后
Xl/mm-7.74-14.86
Xu/mm7.7414.86
X/mm15.4829.72
Yl/mm45.4320.68
Yu/mm94.3681.53
Y/mm48.9360.85
面积/mm2757.441808.46

Fig.14

Haul truck dumping efficiency"

Table 11

Dumping time comparison"

数值优化前优化后
倾倒开始时刻/s15.7516.14
倾倒完成时刻/s20.0019.72
总时长/s4.253.58
1 王继新, 季景方, 张英爽, 等. 基于小波分形理论的工程车辆时域载荷信号降噪方法[J]. 吉林大学学报:工学版, 2011, 41(): 221-225.
Wang Ji-xin, Ji Jing-fang, Zhang Ying-shuang, et al. Denoising method of time domain load signals of engineering vehicles based on wavelet and fractal theory[J].Journal of Jilin University (Engineering and Technology Edition), 2011, 41(Sup.2): 221-225.
2 Duff E. Automated volume estimation of haul-truck loads[C]. ACRA 2000, Melbourne, Australia, 2000: 179-184.
3 LeRoy G, Philip T. Process for three-dimensional modeling and design of off-highway dump bodies[P]. United States Patent: US008113763B2, 2012-02-14.
4 LeRoy G. Method of estimating the volumetric carrying capacity of a truck body[P]. United States Patent: USOO8280596B2, 2012-10-02.
5 SAE J1363. Capacity rating—dumper body and trailer body [S].
6 LeRoy G. Adapting the off-highway truck body volumetric process to real world conditions[C]∥SAE International Off-Highway and Powerplant Congress and Exposition, Milwaukee USA, 2000.
7 Joshua C. Haul truck payload modelling using strut pressures[D]. Edmonton: School of Mining & Petroleum Engineering, University of Alberta, 2015.
8 Sun X, Li X, Xiao D, et al. A method of mining truck loading volume detection based on deep learning and image recognition[J]. Sensors, 2021, 21(2): 635.
9 Yao Z, Huang Q, Ji Z, et al. Deep learning-based prediction of piled-up status and payload distribution of bulk material[J]. Automation in Construction, 2021, 121: 103424.
10 Javier G, Tito A, Francisco Y, et al. Point cloud-based estimation of effective payload volume for earthmoving loaders[J]. Automation in Construction, 2020, 117: 103207.
11 Mi C, Gu Z, Zhang Y, et al. Frame weight and anti-fatigue co-optimization of a mining dump truck based on Kriging approximation model[J]. Engineering Failure Analysis, 2016, 66: 99-109.
12 Mi C, Gu Z, Yang Q, et al. Frame fatigue life assessment of a mining dump truck based on finite element method and multibody dynamic analysis[J]. Engineering Failure Analysis, 2012, 23: 18-26.
13 申焱华,魏福林,石博强. 基于退化过程的矿用自卸车货箱磨损预测分析[J]. 中国机械工程, 2016, 27(21): 2846-2850, 2854.
Shen Yan-hua, Wei Fu-lin, Shi Bo-qiang. Wear prediction analysis of mining dump truck body based on degradation processes[J]. China Mechanical Engineering, 2016, 27(21): 2846-2850, 2854.
14 邓阳庆,王登峰,王建华, 等. 面向用户的重型自卸车节油研究[J]. 吉林大学学报:工学版,2009, 39(): 74-77.
Deng Yang-qing, Wang Deng-feng, Wang Jian-hua, et al. User-oriented fuel economy study on heavy-duty tipper[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(Sup.1): 74-77.
15 Soofastaei A, Aminossadati S M, Kizil M S,et al. A comprehensive investigation of loading variance influence on fuel consumption and gas emissions in mine haulage operation[J]. International Journal of Mining Science and Technology, 2016, 26(6): 995-1001.
16 Chamanara A. Enhancing mine haul truck KPIs via payload balance[D]. Edmonton: School of Mining & Petroleum Engineering, University of Alberta, 2013.
17 郑宏宇, 杨硕, 文良浒, 等. 基于电控制动系统的客车防侧翻控制策略[J]. 吉林大学学报: 工学版, 2016, 46(4): 1038-1043.
Zheng Hong-yu, Yang Shuo, Wen Liang-hu, et al. Anti-rollover control strategy of bus based on electronically controlled braking system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016,46(4): 1038-1043.
18 陈东辉, 吕建华, 龙刚, 等. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报: 工学版,2018,48(4): 1176-1183.
Chen Dong-hui, Jian-hua Lyu, Long Gang, et al. Static rollover stability of semi-mounted agricultural machinery based on ADAMS[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(4): 1176-1183.
[1] Wei SUN,Jun YANG. Finite element modeling and vibration reduction analysis of cylindrical shell structures with equal⁃angle attachment of piezoelectric shunt patches [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 365-374.
[2] Bin HU,Yi-quan CAI,Xin LUO,Zi-bin MAO,Jun-wei LI,Meng-yu GUO,Jian WANG. Theory and experiment of high⁃speed seed filling in limited gear⁃shaped side space based on seeds group stress [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 574-588.
[3] Yang LIU. Calculation method of anti-backward-tilting buffer force of luffing jib tower crane [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2785-2794.
[4] Yang ZHAO,Yang XIAO,Hao SUN,Wen-hao HUO,Song FENG,Yong LIAO. Numerical simulation of micro pitting damage characteristics of lubricated contact gears based on contour integral [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 799-810.
[5] Wei ZHENG,Jian-jun SUN,Chen-bo MA,Qiu-ping YU,Yu-yan ZHANG,Tao NIU. Research status and prospect of automobile wheel hub machining fixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 25-36.
[6] Wei CHEN,Yu-long LEI,Xing-zhong LI,Yao FU,Jian-long HU,Li-guo HOU. Calculation of adhesive wear of involute cylindrical spur gear under low⁃speed conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1628-1634.
[7] Zhen GUO,Hong-ying YU,Zhong-xin HUA,Di ZHAO. Kinematic analysis and simulation of folding process for rigid origami mechanisms [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 66-76.
[8] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!