Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1197-1206.doi: 10.13229/j.cnki.jdxbgxb.20230677

Previous Articles     Next Articles

Heat transfer and melting characteristics of micronmeter-sized aluminum particle oxide layers based on lattice Boltzmnn model

Ruo-meng YING1(),Gao-yi SHANG2,Zhen-chao LIU1(),Deng-wang WANG3,Sheng WANG1   

  1. 1.School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China
    2.State Key Laboratory of Electrical Insulation and Power Equipment,School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China
    3.Northwest Institute of Nuclear Technology,Xi'an 710024,China
  • Received:2023-06-30 Online:2025-04-01 Published:2025-06-19
  • Contact: Zhen-chao LIU E-mail:Ruomeng@stu.xjtu.edu.cn;lzhchao@xjtu.edu.cn

Abstract:

In this paper, a two-dimensional lattice Boltzmann model based on enthalpy was established to study the temperature distribution, average liquid fraction and melting end time of the oxide layer of micronmeter-sized aluminum particles under different boundary conditions and particle sizes. The results show that the natural convection buoyancy has a significant effect on the melting characteristics. When a single heating wall is heated, due to the influence of natural convection buoyancy, the melting process of the lower wall is the fastest, and the melting speed of the upper wall is the slowest. When the two heating walls act together, the melting speed of the upper and lower heating walls is the fastest, and the melting time is shortened by 18.05% compared to the conditions of the left and right heating walls. As the number of heating walls increases, the improvement effect of melting efficiency weakens. Through calculation, it was found that compared with a single heating wall, the melting efficiency of double heating walls, three heating walls, and four heating walls increased by 21%, 73%, and 75%, respectively. The presence of a cold wall slows down the melting process, but the impact only exists in the latter half of the melting process. In addition, an increase in particle size can accelerate melting, but this characteristic will gradually weaken as the particle size increases.

Key words: engineering thermophysics, lattice Boltzmann, liquid fraction, melting characteristics

CLC Number: 

  • TK16

Fig.1

Two-dimensional physical model of melting"

Fig.2

Schemes of 9 model"

Fig.3

Setting of boundary conditions"

Fig.4

Comparison between analytical solution and LBM calculated value"

Table 1

Conversion of physical units to LB units"

物理量实际单位LB单位
长度L1 μm1
黏度υ0.407×106(m2/s)1/6
比热容Cp1 250 J/(kg?K)9.65×104
熔融潜热Lf16.435×106 (J/kg)2.84×106

Fig.5

Temperature distribution and melting process under different single heating walls"

Fig.6

Melting end time under different conditions"

Fig.7

Temperature distribution and melting process under different double-layer heating walls"

Fig.8

Effect of different number of heating walls on melting process"

Fig.9

Temperature distribution and melting process of single-layer insulation wall and cold wall during melting"

Fig.10

Temperature distribution and melting process under different particle sizes"

Fig.11

Melting end time under different particle sizes"

[1] 田入园. 复合固体推进剂中Al颗粒燃烧行为数值模拟[D]. 南京: 南京理工大学能源与动力工程学院, 2017.
Tian Ru-yuan. Numerical simulation of combustion behavior of aluminum particle in composite solid propellants[D]. Nanjing: School of Energy and Power Engineering, Nanjing University of Science and Technology, 2017.
[2] 胡松启, 李葆萱. 固体火箭发动机燃烧基础[M]. 西安: 西北工业大学出版社, 2015.
[3] 王克秀. 固体火箭推进剂及燃烧[M]. 北京:国防工业出版社, 1983.
[4] 萨顿·比布拉兹. 火箭发动机基础[M]. 洪鑫, 张宝炯, 等译. 北京: 科学出版社, 2003.
[5] Fang C, Fen L S. Experimental studies on effects of AP content and particle size in NEPE propellant[J]. Journal of Solid Rocket Technology, 2001, 24(3): 47-53.
[6] 唐伟强, 杨荣杰, 李建民, 等. 高铝固体推进剂中氟化物促进铝燃烧研究进展[J]. 固体火箭技术, 2020,43(6): 679-686.
Tang Wei-qiang, Yang Rong-jie, Li Jian-min et al. Research progress of fluorides in high aluminum solid propellant to promote aluminum combustion[J]. Solid Rocket Technology, 2020, 43(6): 679-686.
[7] Jeurgens L P H, Sloof W G, Tichelaar F D, et al. Thermodynamic stability of amorphous oxide films on metals: application to aluminum oxide films on aluminum substrates[J]. Physical Review B, 2000, 62(7): 4707-4719.
[8] Jeurgens L P H, Sloof W G, Tichelaar F D, et al. Structure and morphology of aluminiumoxide films formed by thermal oxidation of aluminium[J]. Thin solid Films, 2002, 418(2): 89-101.
[9] Merzhanov A G, Grigorjev Y M, Galchenko Y A. Aluminum ignition[J]. Combustion and Flame, 1977, 29: 1-14.
[10] Breiter A L, Mal´Tsev V M, Popov E I. Models of metal ignition[J]. Combustion, Explosion and Shock Waves, 1977, 13(4): 475-484.
[11] Ermakov V A, Razdobreev A A, Skorik A I, et a1. Temperature of aluminum particles at the time of ignition and combustion[J]. Combustion, Explosion and Shock Waves, 1982, 18(2): 256-257.
[12] Desjardin P E, Felske J D, Carrara M D. Mechanistic model for aluminum particle ignition and combustion in air[J]. Journal of Propulsion and Power, 2005, 21(3): 478-485.
[13] Yang H, Lee J, Kim K, et a1. Simplified model for single aluminum particle combustion[C]∥The 47th AIAA Aerospace Science Meeting Including, The New Horizons Forum and Aerospace Exposition, Orlando,USA, 2009: 1-9.
[14] Volkov K N. Combustion of Single Aluminum Droplet in Two-phase Flow[M]. Hauppauge: Nova Science, 2011.
[15] Mohammadian S K, Zhang Y. Convection heat transfer with internal heat generation in porous media: implementation of thermal lattice Boltzmann method[J]. Numerical Heat Transfer Part A: Applications, 2019, 76(3): 101-114.
[16] Jourabian M, Darzi A, Akbari O A, et al. The enthalpy-based lattice Boltzmann method(LBM) for simulation of NePCM melting in inclined elliptical annulus[J]. Physica A: Statistical Mechanics and its Applications, 2019, 548: No.123887.
[17] Ghasemi K, Tasnim S, Mahmud S. Shape-stabilized phase change material convective melting by considering porous configuration effects[J]. Journal of Molecular Liquids, 2022, 355: No.118956.
[18] Chen D, Riaz A, Aute V C, et al. A solid–liquid model based on lattice Boltzmann method For phase change material melting with porous media in cylindrical heat exchangers[J]. Applied Thermal Engineering, 2022, 207: No.118080.
[19] He P, Chen L, Mu Y, et al. Lattice Boltzmann method simulation of ice melting process in the gas diffusion layer of fuel cell[J]. International Journal of Heat and Mass Transfer, 2020, 149(2): No.119121.
[20] Eshraghi M, Felicelli S D. An implicit lattice Boltzmann model for heat conduction with phase change[J]. International Journal of Heat and Mass Transfer, 2012, 55(9, 10): 2420-2428.
[21] Zhao C Y, Dai L N, Tang G H, et al. Numerical study of natural convection in porous media (metals) using lattice Boltzmann method(LBM)[J]. International Journal of Heat and Fluid Flow, 2010, 31(5): 925-934.
[22] Jiang Z H, Yang G G, Li S A, et al. Investigation of the ice melting process in a simplified gas diffusion layer of fuel cell by the lattice Boltzmann method[J]. Energy and Fuel, 2022, 36(10): 5403-5414.
[23] Jany P, Bejan A. Scaling theory of melting with natural convection in an enclosure[J]. International Journal of Heat and Mass Transfer, 1988, 31(6): 1221-1235.
[1] Zhen-jun XU,Rui-feng ZHANG,Jia-xiang CHEN,Xiao-hui ZHANG,Xiao-guang MI,Jie CHEN,Lin CHEN. Influence for backheating on low temperature high mass experimental system [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1133-1138.
[2] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[3] Zhen-jun XU,Hao WANG,Yin-cheng WANG,Nuo ZHANG,Meng CHEN,Qing-qing LI. Flow heat transfer performance of microchannel low temperature heat exchanger [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2294-2299.
[4] Wei LAN,Jiang LIU,Li XIN,Jing-xi LI,Xing-jun HU,Jing-yu WANG,Tao SANG. Influence of rearview mirror styling on water phase distribution on side windows [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1590-1599.
[5] MENG Yu-bo, LI Pi-mao, ZHANG You-tong, WANG Zhi-ming. Inhibition of pressure fluctuation and multi-injection fuel mass deviation in high pressure common rail system [J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[6] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[7] MENG Yu-bo, ZHANG You-tong, WANG Zhi-ming, ZHANG Xiao-chen, FAN Li-kang, LI Tao. Couple hysteretic thermo-electro-mechanical performance of piezoelectric actuators for fuel injector [J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[8] LI Ming-da, KUI Hai-lin, MEN Yu-zhuo, BAO Cui-zhu. Aerodynamic drag of heavy duty vehicle with complex underbody structure [J]. 吉林大学学报(工学版), 2017, 47(3): 731-736.
[9] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[10] CUI Jin-sheng, HOU Xu-yan, DENG Zong-quan, PAN Wan-jing, JIANG Sheng-yuan. Measurement system and experiment study of the effective thermal conductivity of granular system in a vacuum [J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[11] QI Zi Shu, GAO Qing, LIU Yan, BAI Li. Model calculation and analysis of operation condition of heat pump using earth energy system for years [J]. 吉林大学学报(工学版), 2015, 45(6): 1811-1816.
[12] QI Zi-shu, GAO Qing, LIU Yan, YU Ming. Analysis of temperature of underground heat exchanger and efficiency of heat pump with combined cooling and heating [J]. 吉林大学学报(工学版), 2012, 42(02): 339-343.
[13] SONG Min,JIANG Ping,YAN Guang-wu. Lattice Boltzmann model for multi-seismic resources pressure wave in isotropic medium [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 341-0343.
[14] Gao Yin-han,Chen Wang-feng,Cheng Peng,Li Zhen-lei,Chi Juncheng,Li Qiang3 . Twophase three dimension flow field simulation in a cyclone separator [J]. 吉林大学学报(工学版), 2008, 38(增刊): 85-0089.
[15] Li Zhong-jian,Zheng Mao-yu,Wang Fang . Optimization of irreversible fourheatsource absorption
refrigerator with finite heat capacity
[J]. 吉林大学学报(工学版), 2008, 38(02): 283-0286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .