Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1346-1355.doi: 10.13229/j.cnki.jdxbgxb.20230712

Previous Articles     Next Articles

Rheological response and response mechanism of petroleum asphalt treated with ultrasound

Li-ming WANG1(),Zi-kun SONG1,2,Hui ZHOU3,Wen WEI1,Hao YUAN1   

  1. 1.School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
    2.School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150010,China
    3.Heilongjiang Airport Management Group Co. ,Ltd. ,Harbin 150010,China
  • Received:2023-07-07 Online:2025-04-01 Published:2025-06-19

Abstract:

In order to determine the rheological response of ultrasonically disposed petroleum asphalt, a series of rheological tests were used to analyze the changes in the indexes of three typical petroleum asphalt before and after undergoing ultrasonic disposal. It was found that ultrasound reduces the real-time viscosity of asphalt at high temperature by more than 50%, and has an irrecoverable residual effect; the disposal asphalt becomes slightly softer and the thixotropic limit is increased at mid-temperature; and the creep capacity of the disposal asphalt is reduced at low temperature. Chemical and microanalysis showed that the content of heavy components in the asphalt was significantly reduced, and asphaltene aggregates were homogenized and dispersed. Selective inhomogeneous pressurized heating during ultrasound action induced a cracking reaction in the asphalt, which was responsible for the changes in chemical and rheological properties. This significant physicochemical effect of power ultrasound on petroleum asphalt has the potential to be used in road engineering techniques such as warm mixing, recycling, and modified processing.

Key words: road engineering, asphalt, power ultrasound, rheological properties, response mechanism, cracking reaction

CLC Number: 

  • U414

Table 1

Basic performance parameters of asphalt samples"

指标测值
50号70号90号
针入度P(25 ℃,5 s,100 g)/0.1 mm44.575.185.4
针入度指数PI-1.20-1.62-1.63
软化点(R&B)/℃54.248.247.0
15 ℃延度/cm87>100>100

RT

FO

质量变化/%-0.11-0.22-0.51
残留针入度比/%716566
15℃残留延度/cm195355
产地/来源塞内加尔/ERESSENEGAL

中国/中石化茂名石化

公司

中国/北方盘锦沥青公司

Fig.1

Self-made ultrasonic disposal device"

Fig.2

Measured sound field at different disposal frequencies"

Fig.3

Real-time viscosity test of melten asphalt"

Fig.4

Real-time viscosity change of asphalt under typical conditions"

Fig.5

Effect of storage time on viscosity after ultrasonic treatment"

Fig.6

Surface plot of maximum viscosity reduction/residual viscosity reduction under dual variable conditions of ultrasonic frequency and temperature"

Fig.7

Temperature scanning curves of different asphalts"

Fig.8

Frequency scanning curves of different asphalts"

Fig.9

34 °C strain scan curve of different asphalts"

Fig.10

60 s strength modulus curves"

Fig.11

m value curves"

Fig.12

Components content changes of different asphalts and ultrasonic disposal asphalt"

Table 2

CI values of colloidal stability index of different asphalt before and after ultrasonic treatment"

条 件50#70#90#
超声处置前CI2.332.573.55
超声处置后CI2.572.613.76
处置后CI值相对变化/%10.21.46.1

Fig.13

400× microscopic picture of different asphalt"

[1] Suslick K S, Price G J. Applications of ultrasound to materials chemistry[J]. Annual Review of Materials Science, 1999, 29(1): 295-326.
[2] 孙仁远, 王连保, 彭秀君, 等. 稠油超声波降黏试验研究[J]. 油气田地面程, 2001, 20(5): 22-23.
Sun Ren-yuan, Wang Lian-bao, Peng Xiu-jun, et al. Experimental study on ultrasonic viscosity reduction of thick oil [J]. Oil and Gas Field Surface Procedure, 2001, 20(5): 22-23.
[3] Mehdi R, Jafar Q. Experimental investigation of the ultrasonic wave effects on the viscosity and thermal behaviour of an asphaltenic crude oil[J]. Chemical Engineering and Processing-Process Intensification,2020, 153:1 289-1295.
[4] Abarasi H. A review of technologies for transporting heavy crude oil and bitumen via pipelines[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(3): 327-336.
[5] 黄序韬, 梁淑寰. 声波采油的机理与特点研究[J]. 石油学报, 1993(4): 110-116.
Huang Xu-Tao, Liang Shu-Huan. Study on the mechanism and characteristics of acoustic wave oil recovery[J]. Journal of Petroleum, 1993(4): 110-116.
[6] Shedid S A. An ultrasonic irradiation technique for treatment of asphaltene deposition[J]. Journal of Petroleum Science & Engineering, 2004, 42(1): 57-70.
[7] Guo X, Du Z, Li G, et al. High frequency vibration recovery enhancement technology in the heavy oil fields of China[C]∥SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Bakersfield, California, USA, 2004.
[8] 黄欣桐, 周翠红, 郭艳彤,等. 超声应用于超重质渣油降黏的实验研究[J]. 北京石油化工学院学报, 2018, 26(1): 9-13.
Huang Xin-tong, Zhou Cui-hong, Guo Yan-tong, et al. Experimental study on ultrasound application to viscosity reduction of super-heavy residue oil[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 26(1): 9-13.
[9] Huang X T, Zhou C H, Suo Q Y, et al. Experimental study on viscosity reduction for residual oil by ultrasonic[J]. Ultrasonics Sonochemistry, 2018, 41:661-669.
[10] Mousavi S M, Ramazani A, Najafi I, et al. Effect of ultrasonic irradiation on rheological properties of asphaltic crude oils[J]. Petroleum Science, 2012, 9(1): 82-88.
[11] 张龙力, 杨国华, 阙国和, 等. 超声波处理对渣油胶体稳定性的改善作用初步研究[J]. 石油学报: 石油加工, 2010, 26(): 203-206.
Zhang Long-li, Yang Guo-hua, Que Guo-he, et al. Preliminary study on the improvement effect of ultrasonic treatment on the stability of residue colloid[J].Acta Petrolei Sinica(Petroleum Processing), 2010, 26(Sup.1): 203-206.
[12] 王瑞和, 万春浩, 周卫东, 等. 空化射流降低稠油黏度机制[J]. 中国石油大学学报:自然科学版, 2019, 43(5): 101-107.
Wang Rui-he, Wan Chun-hao, Zhou Wei-dong, et al. Mechanism of reducing viscosity of heavy oil by cavitation jet[J]. Journal of China University of Petroleum(Natural Science Edition), 2019, 43(5): 101-107.
[13] Hamidi H, Rafati R, Junin R B, et al. A role of ultrasonic frequency and power on oil mobilization in underground petroleum reservoirs[J]. Journal of Petroleum Exploration and Production Technology, 2012,2(1): 29-36.
[14] 寇杰, 王冰冰, 张益华. 原油超声降黏机制[J].中国石油大学学报: 自然科学版, 2019, 43(5): 185-190.
Kou Jie, Wang Bing-bing, Zhang Yi-hua. Ultrasonic viscosity reduction mechanism of crude oil[J]. Journal of China University of Petroleum(Natural Science Edition), 2019, 43(5): 185-190.
[15] 韦胜超, 姚志林, 卞贺, 等. 氢键作用对沥青质超分子聚集的影响[J]. 石油学报: 石油加工, 2021, 37(3):556-565.
Wei Sheng-chao, Yao Zhi-lin, Bian He, et al. Effect of hydrogen bonding on asphaltene supramolecular aggregation[J].Acta Petrolei Sinica(Petroleum Processing), 2021, 37(3): 556-565.
[16] 袁献伟. 超声波强化沥青发育技术研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2019.
Yuan Xian-wei. Research on the development technology of ultrasonic reinforced asphalt [D]. Harbin:School of Mechanical and Electrical Engineering, Harbin Institute of Technology, 2019.
[17] Wang L M, Song Z K, Gong C. Power ultrasound on asphalt viscoelastic behavior analysis[J]. Case Studies in Construction Materials, 2022, 16: No. e01012 .
[18] 王鹏, 姜海龙, 王健, 等. 碳纳米管/SBS复合改性沥青制备工艺的研究[J]. 山东建筑大学学报, 2019,34(6): 21-26.
Wang Peng, Jiang Hai-long, Wang Jian, et al. Study on preparation process of carbon nanotube/SBS composite modified bitumen[J].Journal of Shandong Jianzhu University, 2019, 34(6): 21-26.
[19] 唐伯明, 丁勇杰, 朱洪洲, 等. 沥青分子聚集状态变化特征研究[J]. 中国公路学报, 2013, 26(3): 50-56, 76.
Tang Bo-ming, Ding Yong-jie, Zhu Hong-zhou, et al. Study on the characteristics of asphalt molecular aggregation state change[J].China Journal of Highway and Transport, 2013, 26(3): 50-56, 76.
[20] 詹小丽, 张肖宁, 卢亮. 沥青低温黏弹性能的预测[J]. 吉林大学学报: 工学版, 2008,38(3): 530-534.
Zhan Xiao-li, Zhang Xiao-ning, Lu Liang. Prediction of low-temperature viscoelastic properties of bitumen[J].Journal of Jilin University(Engineering Science), 2008,38(3): 530-534.
[21] 孙艳娜, 李立寒, 汪于凯. 沥青疲劳性能评价指标[J]. 西南交通大学学报, 2014, 49(6): 1102-1107.
Sun Yan-na, Li Li-han, Wang Yu-kai. Evaluation index of fatigue performance of asphalt[J].Journal of Southwest Jiaotong University, 2014, 49(6): 1102-1107.
[22] 董雨明, 谭忆秋. 硬质沥青混合料的动态黏弹特性[J]. 公路交通科技, 2015, 32(6): 18-24.
Dong Yu-ming, Tan Yi-qiu. Dynamic viscoelastic characteristics of hard asphalt mixture[J].Journal of Highway and Transportation Science and Technology, 2015, 32(6): 18-24.
[23] 张喜军, 仝配配, 蔺习雄, 等. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
Zhang Xi-jun, Tong Pei-pei, Lin Xi-xiong, et al. Evaluation of fatigue properties of hard asphalt based on linear amplitude scanning test[J].Materials Reports, 2021, 35(18): 18083-18089.
[24] 赵泽鹏, 李源, 李梦园, 等. 沥青老化过程中组分与微观形貌演变研究[J]. 炼油技术与工程, 2022, 52(1): 59-64.
Zhao Ze-peng, Li Yuan, Li Meng-yuan, et al. Study on component and micromorphological evolution during asphalt aging[J].Refining Technology and Engineering, 2022, 52(1): 59-64.
[1] An-shun ZHANG,Wei FU,Jun-hui ZHANG,Feng GAO. Shear properties and stress-strain relationships characterization of Changsha compacted clay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1604-1616.
[2] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[3] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[4] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[5] Teng-fei NIAN,Zhao HAN,Zhi-qiang WEI,Guo-wei WANG,Jin-guo GE,Ping LI. Mesoscopic numerical modeling method of asphalt mix considering aggregate morphology [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 639-652.
[6] Wan-feng WEI,Ling-yun KONG,Wei-an XUAN,Fan YANG,Peng GUO. Review of characteristics of asphalt foaming and moisture sensitivity of warm mix mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 20-35.
[7] Feng-chun GUO,Hai-peng BI,Hai-tao WANG,Shu-zheng WU,Hong-yu YANG. Viscoelastic behavior of carbon nano powder modified asphalt based on time-temperature equivalence [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 221-229.
[8] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[9] Rong LUO,Yu LIANG,Long-chang NIU,Ting-ting HUANG,Qiang MIAO. Threshold value of water stability evaluation index of asphalt mixture under multi-temperature conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1966-1977.
[10] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[11] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[12] Zu-zhong LI,Meng-yuan LI,Wei-dong LIU,Xiao-xiao PANG,Hao Tang,Xue-lei ZHANG,Chen-yang MA. Surface modification of bagasse fibers and road performances of asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1738-1745.
[13] Ya-zhen SUN,Bo-xin XUE,Yan SUN,Zhi-chen WANG,Jia-wei PAN. Mesoscale simulation of cracking behavior of asphalt mixture considering heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1708-1718.
[14] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[15] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .