Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 1883-1891.doi: 10.13229/j.cnki.jdxbgxb.20231047

Previous Articles     Next Articles

Rolling bearing fault diagnosis based on variational mode extraction and lightweight network

Zhi-gang FENG(),Shou-qi WANG,Ming-yue YU   

  1. College of Automation,Shenyang Aerospace University,Shenyang 110136,China
  • Received:2023-10-04 Online:2025-06-01 Published:2025-07-23

Abstract:

A rolling bearing fault diagnosis method combining variational mode extraction (VME) and lightweight convolutional neural network (CNN) was designed to solve the problems of low diagnostic performance of CNN in complex industrial environments as well as the problem of large number of parameters. VME was used to extract the desired modes in the vibration signals collected from multiple sensors and construct the multi-sensor grayscale feature maps to eliminate information interference while enabling data fusion. The residual structure and ultra-lightweight subspace attention module(ULSAM) are introduced on the basis of SqueezeNet to construct a lightweight residual attention convolutional neural network (LRACNN). The method has a high fault recognition rate and diagnostic stability in complex environments.

Key words: fault diagnosis, rolling bearing, convolutional neural network, attention mechanism, lightweight

CLC Number: 

  • TH17

Fig.1

Fire module structure"

Fig.2

ULSAM structure"

Fig.3

Flowchart of the proposed method"

Fig.4

Grayscale feature map construction process"

Fig.5

LRACNN model structure"

Fig.6

CWRU experimental platform"

Table 1

Description of CWRU bearing failure data"

标签

故障

类型

传感器负载/HP

故障

直径/mm

数据

长度

样本

数量

Nor健康DE和FE0~31 024200
Ba1滚动体0.177 81 024200
Ba2滚动体0.355 61 024200
Ba3滚动体0.533 41 024200
In1内圈0.177 81 024200
In2内圈0.355 61 024200
In3内圈0.533 41 024200
Ou1外圈0.177 81 024200
Ou2外圈0.355 61 024200
Ou3外圈0.533 41 024200

Fig.7

Spectrum of the vibration signal of In1 at the DE"

Fig.8

VME processes the In1 vibration signal from the DE"

Table 2

Center frequencies of bearing vibration signals of different fault types at the DE and FE under different working conditions"

标签ωd/Hz
A0A1A2A3
DEFEDEFEDEFEDEFE
Nor1 0001 0001 1001 0001 1001 0002 1002 100
Ba13 3004 1003 4004 1003 4004 1003 4001 400
Ba23 2004 1003 3004 1003 2001 4001 4001 400
Ba33 2004 1003 3004003 4001 1003 3001 100
In13 6001 5003 5001 5003 5001 4003 6001 400
In23 4004 3003 5004 3003 5004 3001 4001 100
In32 9005002 9001 8002 8003 3002 8003 300
Ou13 4003 3002 8003 3002 8003 3003 3003 300
Ou23 4004 1003 4004 1003 5004 1003 4004 100
Ou32 8004 1003 4006003 5006003 4005 100

Fig.9

Multi-sensor grayscale feature maps for different fault types"

Table 3

Diagnostic results and time for different feature extraction methods"

方法VMEVMDEMDITDWPD
正确率/%10099.5097.5598.8099.25
时间/s0.1312.0570.1820.1480.168

Table 4

Performance comparison of different network models"

模型正确率/%训练时间/s模型参数/MB
LRACNN10073.400.045
SqueezeNet99.20083.800.057
LCNN1397.3861 623.0015.522
ShuffleNet1392.094962.004.385
MCDS-CNN1499.790123.621.580

Fig.10

Time domain waveforms of original vibration signal and signal under noise"

Table 5

Diagnostic results of different models in noisy environments"

模型SNR/dB
-4-20246
LRACNN93.3094.6596.5097.1097.7598.65
SqueezeNet91.6092.8594.6096.6596.7097.40

CNN+

Attention2

83.9687.5790.3392.8293.6995.08
AAnNet281.4988.2295.4496.6897.3998.33

MSCNN-

BiLSTM15

87.0093.0096.7097.5099.2499.24

Table 6

Diagnostic results of the model under multi-case industrial frequency cycle interference"

负载/HP正确率/%
无干扰50 Hz干扰60 Hz干扰
099.9099.8599.75
110099.9599.90
299.9599.9099.75
399.9599.6599.70
[1] Yang D, Karimi H R, Sun K. Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples[J]. Neural Networks, 2021, 14: 133-144.
[2] 陈晓雷, 孙永峰, 李策, 等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 296-309.
Chen Xiao-lei, Sun Yong-feng, Li Ce, et al. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 296-309.
[3] Gu J, Peng Y, Lu H, et al. A novel fault diagnosis method of rotating machinery via VMD, CWT and improved CNN[J]. Measurement, 2022, 200: No.111635.
[4] Yao D, Liu H, Yang J, et al. A lightweight neural network with strong robustness for bearing fault diagnosis[J]. Measurement, 2020, 159: No.107756.
[5] Bai R, Xu Q, Meng Z, et al. Rolling bearing fault diagnosis based on multi-channel convolution neural network and multi-scale clipping fusion data augmentation[J]. Measurement, 2021, 184: No.109885.
[6] Zhong H, Lv Y, Yuan R, et al. Bearing fault diagnosis using transfer learning and self-attention ensemble lightweight convolutional neural network[J]. Neurocomputing, 2022, 501: 765-777.
[7] Wang S, Feng Z. Multi-sensor fusion rolling bearing intelligent fault diagnosis based on VMD and ultra-lightweight GoogLeNet in industrial environments[J]. Digital Signal Processing, 2024, 145: No.104306.
[8] 王军, 张维通, 闫正兵, 等. 基于迁移QCNN的孪生网络轴承故障诊断方法[J]. 计算机测量与控制, 2024, 32(4): 6-12.
Wang Jun, Zhang Wei-tong, Yan Zheng-bing, et al. Twin network-based bearing fault diagnosis method with transfer QCNN[J]. Computer Measurement & Control, 2024, 32(4): 6-12.
[9] Nazari M, Sakhaei S M. Variational mode extraction: A new efficient method to derive respiratory signals from ECG[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(4): 1059-1067.
[10] Saini R, Jha N K, Das B, et al. ULSAM: Ultra-ightweight ubspace ttention odule for ompact onvolutional eural etworks[C]∥2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 2020: 1616-1625.
[11] Ye M, Yan X, Chen N, et al. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network[J]. Applied Acoustics, 2023, 202: No.109143.
[12] Smith W A, Randall R B. Rolling element bearing diagnostics using the case western reserve university data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 100-131.
[13] Wang Y, Yan J, Sun Q, et al. Bearing intelligent fault diagnosis in the industrial internet of things context: a lightweight convolutional neural network[J]. IEEE Access, 2020, 8: 87329-87340.
[14] Ling L, Wu Q, Huang K, et al. A lightweight bearing fault diagnosis method based on multi-channel depthwise separable convolutional neural network[J]. Electronics, 2022, 11(24): No.4110.
[15] Xu Z, Mei X, Wang X, et al. Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors[J]. Renewable Energy, 2022, 182: 615-626.
[1] Rui-shan DU,Zi-shan WANG. Multi perspective facial expression recognition algorithm based on spatiotemporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2097-2102.
[2] Ya-li XUE,Tong-an YU,Shan CUI,Li-zun ZHOU. Infrared small target detection based on cascaded nested U-Net [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1714-1721.
[3] Hua CAI,Yu-yao WANG,Qiang FU,Zhi-yong MA,Wei-gang WANG,Chen-jie ZHANG. Semantic segmentation network based on attention mechanism and feature fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1384-1395.
[4] He-shan ZHANG,Meng-wei FAN,Xin TAN,Zhan-ji ZHENG,Li-ming KOU,Jin XU. Dense small object vehicle detection in UAV aerial images using improved YOLOX [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1307-1318.
[5] De-qiang CHENG,Gui LIU,Qi-qi KOU,Jian-ying ZHANG,He JIANG. Lightweight image super⁃resolution network based on adaptive large kernel attention fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1015-1027.
[6] Yang LI,Xian-guo LI,Chang-yun MIAO,Sheng XU. Low⁃light image enhancement algorithm based on dual branch channel prior and Retinex [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1028-1036.
[7] Na WANG,Yue-lei CUI,Yang LI,Zi-cong WANG. Rolling bearing fault diagnosis method via wavelet packet logarithmic-energy map [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 494-502.
[8] Hua-song DONG,Yuan-feng LIAN. Lightweight detection algorithm for lossless transcoding and heavy compression of massive digital media videos [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 741-747.
[9] Xiao-ran GUO,Tie-jun WANG,Yue YAN. Entity relationship extraction method based on local attention and local remote supervision [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 307-315.
[10] Hao WANG,Bin ZHAO,Guo-hua LIU. Temporal and motion enhancement for video action recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 339-346.
[11] Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645.
[12] Ping YU,Kang ZHAO,Jie CAO. Rolling bearing fault diagnosis based on optimized A-BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2156-2166.
[13] Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337.
[14] Yun-zuo ZHANG,Yu-xin ZHENG,Cun-yu WU,Tian ZHANG. Accurate lane detection of complex environment based on double feature extraction network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1894-1902.
[15] Chang-jian WANG,Jiu-ming LIU,Jin-zhou ZHANG,Bin LI. Laser sequence pulse diagnosis method of planetary reducer fault based on high-speed photography technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1869-1875.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Wei,Yang Zhao-sheng,Li Yi-wu,Liu Xin-jie,Chen Xin . Weighting calculation and judging method of regional traffic state based on information coordination[J]. 吉林大学学报(工学版), 2007, 37(03): 524 -0527 .
[2] Dong En-zeng,Chen Zeng-qiang,Yuan Zhu-zhi . Control and synchronization of chaos systems based on neural network PID controller[J]. 吉林大学学报(工学版), 2007, 37(03): 646 -0650 .
[3] Meng Guang-wei,Li Feng, Zhao Yun-liang. Reliability analysis of fatigue and fracture based on stochastic finite element method[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 16 -0019 .
[4] Shi Gang, Shi Yong-jiu, Wang Yuan-qing. Calculational method of shear deformation for beam-to-column connection panel zone in steel frames[J]. 吉林大学学报(工学版), 2006, 36(04): 462 -466 .
[5] Zhang Jian-hong,Zuo Chun-cheng,Qian Sheng-jun,Qi Pei-zheng . Simulation of impact test bench with pendulum
based on bearing clearance model
[J]. 吉林大学学报(工学版), 2007, 37(03): 553 -0557 .
[6] Guo Kong-hui,Wu Hai-dong,Lu Dang . Brush model for steadystate sideslip of tire on icy road[J]. 吉林大学学报(工学版), 2007, 37(02): 253 -0258 .
[7] Zhao Ding-xuan;Feng Shi-zhu;Gong Ming-de;Deng Le. Improved force feedback control method for construction telerobot [J]. 吉林大学学报(工学版), 2008, 38(03): 575 -0579 .
[8] Yu Sheng-bao,Zhang Xian-tao,Chen Tian-qi,Wang Zhao-ming . Electrical detection with noncontact electrode[J]. 吉林大学学报(工学版), 2008, 38(02): 370 -0373 .
[9] JIN Jing-fu, CONG Qian, YANG Xiao-dong. Freezing Adhesive Characteristics of Engineering Materials and[J]. 吉林大学学报(工学版), 2005, 35(05): 486 -0489 .
[10] WU Jian,DONG Hui-juan,ZHANG Song-bai,ZHANG Guang-yu. Novel primary series matching scheme for piezoelectric ultrasonic transducer[J]. 吉林大学学报(工学版), 2009, 39(06): 1641 -1645 .