Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (3): 1028-1036.doi: 10.13229/j.cnki.jdxbgxb.20240148

Previous Articles    

Low⁃light image enhancement algorithm based on dual branch channel prior and Retinex

Yang LI1,2,3(),Xian-guo LI1,3(),Chang-yun MIAO1,3,Sheng XU2   

  1. 1.School of Electronics and Information Engineering,Tiangong University,Tianjin 300387,China
    2.School of Software and Communications,Tianjin Sino-German University of Applied Sciences,Tianjin 300350,China
    3.Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems,Tianjin 300387,China
  • Received:2024-02-05 Online:2025-03-01 Published:2025-05-20
  • Contact: Xian-guo LI E-mail:lytg1985@126.com;lixianguo@tiangong.edu.cn

Abstract:

A low illumination image enhancement algorithm based on dual branch channel priors and Retinex is proposed to address the issues of local dimming, detail loss, and over enhancement in existing algorithms. Firstly, on the basis of Retinex, a dual branch bright dark prior feature guidance method is proposed, and a bright channel prior feature module and a dark channel prior feature module are designed to guide the network to suppress reflection component noise and improve lighting component brightness; Secondly, a pixel mixed attention mechanism module is designed to learn targeted features from three dimensions: channel, space, and pixel; Thirdly, a dark channel refractive index estimation module is designed to amplify image detail features. Finally, a mixed loss function is used to adjust brightness, contrast, noise, and color constraints. The experimental results on public datasets show that compared with 10 advanced algorithms, this algorithm improves image brightness while reducing color distortion and detail loss, achieving the best visual effects and quality indicators.

Key words: low light image, image enhancement, dual-branch channel retinexnet, pixel hybrid attention mechanism, channel prior features

CLC Number: 

  • TP391

Fig.1

Overall model structure of dbcrnet underground image enhancement network"

Fig.2

General diagram of decomposition module structure"

Fig.3

Pixel bottleneck attention module (PBAM) network model diagram"

Fig.4

Structure of reflection component denoising module"

Fig.5

Structure of light component enhancement network"

Fig.6

Enhancement effects of various enhancement algorithms on underground public datasets"

Table 1

Comparison of objective evaluation data for image quality"

算法PSNR↑SSIM↑CIEDE2000↓NIQE↓
MSR-Net14.690.4920.175.38
LIME16.000.5220.393.77
MBLLEN17.950.7121.134.31
RetinexNet17.570.6419.324.54
KinD20.230.7717.394.24
KinD++20.590.8214.223.88
Zero-DCE14.860.5215.233.70
Zero-DCE++16.420.6015.193.49
URetinex-Net21.170.8113.924.02
PairLIE19.510.7414.234.33
本文21.580.8514.193.38

Table 2

Comparison of evaluation indicators for various network models"

算法参数量/M计算量/G运行时间/s
MSR-Net0.68318.180.168 8
MBLLEN0.45301.120.188 2
RetinexNet0.84587.470.321 8
KinD8.16567.230.386 8
KinD++8.27598.280.392 0
Zero-DCE0.8085.760.002 5
Zero-DCE++0.0819.060.001 5
URetinex-Net0.36940.740.014 4
PairLIE0.34368.270.012 3
本文3.38438.190.218 2

Fig.7

Comparison of loss function ablation experimental results"

Table.3

Comparison of objective data mean for low illumination image loss function ablation experiment in underground areas"

评估指标baselinew/o Lew/o Liw/o Ldw/o Lcw/o Lnw/oLs
PSNR↑21.5820.2419.7619.9620.2819.9220.76
SSIM↑0.8580.8000.8210.8310.7920.8190.838
NIQE↓3.3883.4833.4913.4883.4973.3923.481

Fig.8

Ablation experiment results of attention mechanism module"

Table.4

Comparison of objective data mean for the ablation experiment of the attention mechanism module of underground low illumination images"

实验序号BAMPAMPSNR↑SSIM↑NIQE↓
121.580.8583.388
2×20.890.7893.532
3×20.380.7783.558
4××18.210.7323.688

Table 5

Comparison of objective data mean for various models of underground low illumination image ablation experiments"

实验序号BCPFDCPFDTPSNR↑SSIM↑NIQE↓
121.580.8583.388
2×20.780.8333.397
3××19.630.7983.482
4×19.890.8083.428
1 万方, 雷光波, 徐丽. 基于阶跃滤波器的低照度图像边缘增强算法[J]. 计算机仿真, 2022, 39(5):220-224.
Wan Fang, Lei Guang-bo, Xu Li. Edge enhancement algorithm of low illumination image based on step filter[J]. Computer Simulation, 2022, 39(5): 220-224.
2 张锦洲, 姬世青, 谭创. 融合卷积神经网络和双边滤波的相贯线焊缝提取算法[J]. 吉林大学学报: 工学版,2024, 54(8): 2313-2318.
Zhang Jin-zhou, Ji Shi-qing, Tan Chuang. Fusion algorithm of convolution neural network and bilateral filtering for seam extraction[J]. Journal of Jilin University (Engineering and Technology Edition),2024, 54(8): 2313-2318.
3 王欣, 党电太. 基于视觉信息补偿的光照不均图像增强方法[J]. 吉林大学学报: 工学版, 2024, 54(8): 2301-2306.
Wang Xin, Dang Dian-tai. Image enhancement method of uneven illumination based on visual information compensation[J].Journal of Jilin University (Engineering and Technology Edition),2024, 54(8): 2301-2306.
4 Lin Y H, Lu Y C. Low-light enhancement using a plug-and-play retinex model with shrinkage mapping for illumination estimation[J]. IEEE Transactions on Image Processing, 2022, 31(6): 4897-4908.
5 Ma Q, Wang Y, Zeng T. Retinex based variational framework for low light image enhancement and denoising[J]. IEEE Transactions on Multimedia, 2022, 25(6): 5580-5588.
6 Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017,26(2): 982-993.
7 Wang S H, Zheng J, Hu H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548.
8 Tao L, Zhu C, Xiang G Q, et al. LLCNN: a convolutional neural network for low-light image enhancement[C]∥IEEE Visual Communication and Image Processing, St. Petersburg, USA, 2017: No.8305143.
9 Cai J R, Gu S H, Zhang L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018,27(4): 2049-2062.
10 Lyu F, Lu F, Wu J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]∥British Machine Vision Conference, Newcastle,UK,2018: 220-232.
11 Zhang Y, Zhang J, Guo X. Kindling the darkness: a practical low-light image enhancer[C]∥ACM International Conference on Multimedia, Nice,France, 2019: 1632-1640.
12 Zhang Y, Guo X, Ma J, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013-1037.
13 Guo C, Li C, Guo J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1777-1786.
14 Li C, Guo C, Chen C L. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4225-4238.
15 Shen L, Yue Z, Feng F, et al. MSR-Net: low-light image enhancement using deep convolutional network[J/OL].[2025-01-20].
16 Wei C, Wang W, Yang W, et al. Deep retinex decomposition for low-light enhancement[C]∥BritishMachine Vision Conference (BMVC), Newcastle, UK, 2018: 481-490.
17 Fan M H, Wang W J, Yang W H,et al. Integrating semantic segmentation and retinex model for low-light image enhancement[C]∥ACM International Conference on Multimedia, Seattle, WA, USA,2020: 2317-2325.
18 Wu W, Weng J, Zhang P, et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancement[C]∥IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5901-5910.
19 陈广秋, 陈昱存, 李佳悦, 等.基于DNST 和卷积稀疏表示的红外与可见光图像融合[J]. 吉林大学学报:工学版, 2021, 51(3): 996-1010.
Chen Guang-qiu, Chen Yu-cun, Li Jia-yue,et al. Infrared and visible image fusion based on discrete nonseparable shearlet transform and convolutional sparse representation[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 996-1010.
20 Yan Y Y, Ren W Q, Guo Y F, et al. Image deblurring via extreme channels prior[C]∥IEEE Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6978-6986.
21 Lu Z, Long B, Yang S. Saturation based iterative approach for single image dehazing[J]. IEEE Signal Processing Letters, 2020, 27: 665-669.
22 Zhao Y L, Wang D H, Wang L O. Convolution accelerator designs using fast algorithms[J].Algorithms,2019,12(5): 112.
23 Ren X, Yang W, Cheng W H, et al. Lr3m: robust low-light enhancement via low rank regularized retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5862-5876.
24 Yan W D, Tan R T, Dai D X. Nighttime defogging using high-low frequency decomposition and gray scale color networks[C]∥European Conference on Computer Vision, Glasgow, UK, 2020: 473-488.
25 Jiang Z Q, Li H T, Liu L J, et al. A switched view of Retinex: deep self-regularized low-light image enhancement[J]. Neurocomputing, 2021,454:361-372.
26 Ma K, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11):3345-3356.
27 Lee C, Lee C, Kim C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384.
28 Fu Z, Yang Y, Tu X, et al. Learning a simple low-light image enhancer from paired low-light instances [C]∥IEEE Computer Vision and Pattern Recognition(CVPR),Vancouver, Canada, 2023: 22252-22261.
[1] Xin WANG,Dian-tai DANG. Image enhancement method of uneven illumination based on visual information compensation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2301-2306.
[2] Jin-zhou ZHANG,Shi-qing JI,Chuang TAN. Fusion algorithm of convolution neural network and bilateral filtering for seam extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2313-2318.
[3] De-xing WANG,Kai GAO,Hong-chun YUAN,Yu-rui YANG,Yue WANG,Ling-dong KONG. Underwater image enhancement based on color correction and TransFormer detail sharpening [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 785-796.
[4] Ming LIU,Yu-hang YANG,Song-lin ZOU,Zhi-cheng XIAO,Yong-gang ZHANG. Application of enhanced edge detection image algorithm in multi-book recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 891-896.
[5] Hua-wei JIANG,Zhen YANG,Xin ZHANG,Qian-lin DONG. Research progress of image dehazing algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1169-1181.
[6] Fu LIU,Lu LIU,Tao HOU,Yun LIU. Night road image enhancement method based on optimized MSR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 323-330.
[7] WU Yi-quan,WU Shi-hua,ZHANG Yu-fei. Infrared image adaptive enhancement in Contourlet domain based on chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2014, 44(5): 1466-1473.
[8] LI Ao, LI Yi-bing, LIU Dan-dan, YANG Xiao-dong. Retinex enhancement method of multi-exposure workpiece images based on NSCT [J]. , 2012, (06): 1592-1596.
[9] SUN Ming-chao, ZHANG Chong, LIU Jing-hong. Fusion of visible and infrared images based on multi-scale image enhancement [J]. , 2012, (03): 738-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!