Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2063-2068.doi: 10.13229/j.cnki.jdxbgxb.20240556

Previous Articles     Next Articles

Algorithm for detecting corrosion points in bridge steel structures based on synthetic aperture ultrasonic imaging

Feng SHI(),Peng NIU   

  1. College of Civil Engineering and Architecture,Shenyang University,Shenyang 110044,China
  • Received:2024-05-20 Online:2025-06-01 Published:2025-07-23

Abstract:

to address the problem of non-linear organization arrangement characteristics such as texture and unevenness on the surface of bridge steel structures, which increase the difficulty of corrosion point detection, a corrosion point detection algorithm based on synthetic aperture ultrasonic imaging technology was designed. Firstly, the multi element synthetic aperture focusing technology was adopted to obtain ultrasonic images of bridge steel structures. By focusing ultrasonic energy, the resolution and clarity of the ultrasonic images were improved, making it easier to identify and locate corrosion points. Secondly, using gray level co-occurrence matrix technology to capture the spatial relationships between pixels in the image, the arrangement features of the steel structure organization on the surface of the bridge were extracted. Finally, the Fisher discriminant criterion was used to remove features with low or redundant contribution to the detection, and the filtered features were input into the neural network to accurately detect corrosion points using the non-linear mapping ability of the neural network. The experimental results show that after applying the algorithm, the position and diameter distance of the corrosion points can be clearly observed. The diameter, inclination angle, and depth of the corrosion points detected by the algorithm are basically consistent with the actual values, indicating the effectiveness of the algorithm.

Key words: corrosion point detection, screening feature, synthetic aperture ultrasound imaging, neural networks, bridge steel structure, echo signal

CLC Number: 

  • TG171

Fig.1

Practical application scenarios of synthetic aperture ultrasound imaging"

Fig.2

Synthetic aperture ultrasound imaging results"

Fig.3

Side view of synthetic aperture ultrasound imaging"

Fig.4

Corrosion point contour curve detection diagram"

Table 1

Comparison between test results and real data of corrosion points"

参数腐蚀点1腐蚀点2
腐蚀点直径/mm倾斜角度/(°)深度/mm腐蚀点直径/mm倾斜角度/(°)深度/mm
实际数据5.209.2020.07.608.5040.00
本文算法5.289.3120.27.668.5540.10
超声导波传播检测5.969.3621.37.628.8542.62
同步提取变换检测6.0111.2522.17.668.9448.55
合成孔径聚焦成像检测5.5710.9420.77.899.0139.47
自发漏磁效应检测5.558.5418.18.008.0740.95
[1] 雷天成, 高蓉康, 刘成波. 合成孔径技术在光声成像中的应用[J]. 激光与光电子学进展, 2022, 59(6): 125-136.
Lei Tian-cheng, Gao Rong-kang, Liu Cheng-bo. Application of synthetic aperture technology in photoacoustic imaging[J]. Laser & Optoelectronics Progress, 2022, 59(6): 125-136.
[2] 黄兵, 马燕, 艾从沛, 等. 耐候钢桥耐腐蚀性能与腐蚀疲劳性能研究进展[J]. 世界桥梁, 2023, 51(1): 85-93.
Huang Bing, Ma Yan, Ai Cong-pei, et al. Status quo of corrosion resistance and corrosion fatigue property research on weathering steel bridges[J]. World Bridges, 2023, 51(1): 85-93.
[3] 张宇, 郑凯锋, 胡博. 免涂装耐候钢的腐蚀模型及其桥梁强度和稳定设计方法研究[J]. 铁道标准设计, 2023, 67(6): 99-108.
Zhang Yu, Zheng Kai-feng, Hu Bo. Research on corrosion model of uncoated weathering steel and its strength and stabilization design method for bridges[J]. Railway Standard Design, 2023, 67(6): 99-108.
[4] 钟芳桃, 石文泽, 卢超, 等. 基于同步提取变换的钢轨踏面裂纹电磁超声表面SH波B扫成像检测研究[J]. 铁道学报, 2023, 45(6): 96-105.
Zhong Fang-tao, Shi Wen-ze, Lu Chao, et al. Study on B-scan imaging detection of rail tread crack with surface SH wave EMAT based on synchroextracting transform[J]. Journal of the China Railway Society, 2023, 45(6): 96-105.
[5] 钟华, 孙凯华, 孙铭, 等. 激光超声的多模式合成孔径聚焦成像仿真分析[J]. 应用声学, 2022, 41(4): 535-547.
Zhong Hua, Sun Kai-hua, Sun Ming, et al. Simulation analysis of multi-mode synthetic aperture focusing technique based on laser ultrasound[J]. Journal of Applied Acoustics, 2022, 41 (4): 535-547.
[6] 周建庭, 夏乾文, 杨茂, 等. 基于自发漏磁效应的钢筋锈蚀分级评估研究[J]. 重庆交通大学学报: 自然科学版, 2022, 41(10): 93-99.
Zhou Jian-ting, Xia Qian-wen, Yang Mao, et al. Grading assessment of steel corrosion based on spontaneous magnetic flux leakage effect[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2022, 41(10): 93-99.
[7] 陈建, 于帆, 林琳, 等. 基于多阵列合成孔径的局部超声阵列聚焦方法[J]. 吉林大学学报: 工学版, 2022, 52(10): 2447-2455.
Chen Jian, Yu Fan, Lin Lin, et al. Local ultrasound array focusing method based on multiarray synthetic aperture[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2447-2455.
[8] 马慧敏, 檀磊, 张京会, 等. 基于深度学习的合成孔径成像系统共相误差检测研究综述[J]. 量子电子学报, 2022, 39(6): 927-941.
Ma Hui-min, Tan Lei, Zhang Jing-hui, et al. Review of co-phasing error detection for synthetic aperture imaging system based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 927-941.
[9] 高龙, 李显杰, 安超, 等. 微透镜阵列的合成孔径成像激光雷达收发光学系统[J]. 光子学报, 2023, 52(11): 211-221.
Gao Long, Li Xian-jie, An Chao, et al. Synthetic aperture imaging lidar tran-receiver optical system based on microlens array[J]. Acta Photonica Sinica, 2023, 52(11): 211-221.
[10] 刘旭川. 连续钢构桥梁支座消能减振抗震加固技术研究[J]. 建筑结构, 2022, 52(14): 98-102.
Liu Xu-chuan. Research on energy dissipation and vibration reduction seismic reinforcement technology of continuous steel bridge bearings[J]. Building Structure, 2022, 52 (14): 98-102.
[11] 熊文, 李刚, 张宏伟, 等. 基于点云数据与工程知识的桥梁形态变化识别方法[J]. 湖南大学学报: 自然科学版, 2022, 49(5): 101-110.
Xiong Wen, Li Gang, Zhang Hong-wei, et al. Change detection method of bridges geometrical profile based on point cloud data and engineering knowledge[J]. Journal of Hunan University (Natural Science Edition), 2022, 49(5): 101-110.
[12] 姜永生. 基于光纤陀螺的有轨钢构桥梁形变检测方法[J]. 半导体光电, 2022, 43(5): 892-897.
Jiang Yong-sheng. Research on rail steel structure of bridge deformation monitoring based on fiber optic gyroscope[J]. Semiconductor Optoelectronics, 2022, 43(5): 892-897.
[13] 张劲泉, 晋杰, 汪云峰, 等. 公路桥梁智能检测技术与装备研究进展[J]. 公路交通科技, 2023, 40(1): 1-27, 58.
Zhang Jin-quan, Jin Jie, Wang Yun-feng, et al. Study progress of intelligent inspection technology and equipment for highway bridge[J]. Journal of Highway and Transportation Research and Development, 2023, 40 (1): 1-27, 58.
[14] 凌烈鹏. 大跨度桥梁线桥一体化检测监测系统技术方案及应用[J]. 铁道建筑, 2023, 63(4): 33-37, 51.
Ling Lie-peng. Technical scheme and application of track-bridge integrated inspection and monitoring system for long-span bridges[J]. Railway Engineering, 2023, 63(4): 33-37, 51.
[15] 刘颖, 杨鹏飞, 张立军, 等. 前馈神经网络和循环神经网络的鲁棒性验证综述[J]. 软件学报, 2023, 34(7): 3134-3166.
Liu Ying, Yang Peng-fei, Zhang Li-jun, et al. Survey on robustness verification of feedforward neural networks and recurrent neural networks[J]. Journal of Software, 2023, 34(7): 3134-3166.
[1] Rui-shan DU,Zi-shan WANG. Multi perspective facial expression recognition algorithm based on spatiotemporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2097-2102.
[2] Yin-fei DAI,Xiu-zhen ZHOU,Yu-bao LIU,Zhi-yuan LIU. In⁃vehicle network intrusion detection system based on CAN bus data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 857-865.
[3] Xiao-dong CAI,Qing-song ZHOU,Yan-yan ZHANG,Yun XUE. Social recommendation based on global capture of dynamic, static and relational features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 700-708.
[4] Hao WANG,Bin ZHAO,Guo-hua LIU. Temporal and motion enhancement for video action recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 339-346.
[5] Shuang LI,Zi-rui LIN,Song YE,Xu LIU,Ji-song ZHAO. Orbital capability evaluation and trajectory reconstruction for launch vehicle with thrust decline [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2245-2253.
[6] Huai-jiang YANG,Er-shuai WANG,Yong-xin SUI,Feng YAN,Yue ZHOU. Simplified residual structure and fast deep residual networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1413-1421.
[7] Ming-hua GAO,Can YANG. Traffic target detection method based on improved convolution neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1353-1361.
[8] Xiang-jun LI,Jie-ying TU,Zhi-bin ZHAO. Validity classification of melting curve based on multi⁃scale fusion convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 633-639.
[9] Tao CHEN,Jing QIN,Hua ZHAO,Qing-peng SU,Yong LYU,Kai ZHONG,Ying-bo WANG,Yi-qiang PEI. Prediction of gasoline engine steady state exhaust based on model group prediction method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1565-1574.
[10] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[11] Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260.
[12] Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919.
[13] GAO Ming-liang, YU Sheng-bao, ZHENG Jian-bo, XU Chang, ZHANG Kun, LUAN Hui. Application of PSBP method in high-density two-dimensional resistivity inversion [J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033.
[14] LI Di-fei, TIAN Di, HU Xiong-wei. Standard literature language model based on deep learning [J]. 吉林大学学报(工学版), 2015, 45(2): 596-599.
[15] YAN Chu-liang, HAO Yun-xiao, LIU Ke-ge. Fatigue life prediction of materials based on BP neural networks optimized by genetic algorithm [J]. 吉林大学学报(工学版), 2014, 44(6): 1710-1715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Shi Yu, Wang Shu-xun, Huang Zhi-qiang . Source parameter estimate based on multistage wiener filter
[J]. 吉林大学学报(工学版), 2006, 36(05): 761 -0765 .
[2] Zhang Jun;Zhang Guo-ying;Liu Yu-shu. Network anomaly detection based on attributes similarity and cloud model[J]. 吉林大学学报(工学版), 2006, 36(06): 954 -0957 .
[3] Wang Qing-nian,Ji Er-cong,Wang Wei-hua . Coordinated control for mode-switch of parallel hybrid electric vehicle[J]. 吉林大学学报(工学版), 2008, 38(01): 1 -006 .
[4] CONG Qian, CHAI Xiongliang, YANG Xiaodong, JIN Jingfu. Coal Adhesion Reduction on Tramcar by Flexible Bionics Technique[J]. 吉林大学学报(工学版), 2005, 35(04): 437 -441 .
[5] WANG Li-juan,LIN Nian-feng,QI Zhong,HUANG Ji-guo,LV Zhen . Pretreatment of pyrimidine wastewater by aerated microelectrolysis and flocculation technique[J]. 吉林大学学报(工学版), 2008, 38(06): 1501 -1504 .
[6] ZHONG Yan-tao, MA Jian-feng. Efficient secure group key exchange protocol in space information networks[J]. 吉林大学学报(工学版), 2012, 42(01): 203 -206 .
[7] Qian Ying ,Zhang Ying, Yu Yong-sen, Zheng Wei,Zhang Yu-shu . Novel stress sensor of FBG on unique cantilever[J]. 吉林大学学报(工学版), 2006, 36(05): 757 -0760 .
[8] WANG Qing-Yuan, LI Yu-Shan, CAO Jian-Zhong. Fullwave analysis and rigorous design of a new annular branch hybrid[J]. 吉林大学学报(工学版), 2010, 40(03): 821 -0825 .
[9] XU Si-chuan, ZHANG Jian-hua, SUN Ji-mei . Reaserch on Inlet Swirl Ratio Influence of Direct Injection Turbulent Flow in Diesel Engine Cylinder[J]. 吉林大学学报(工学版), 2000, 30(01): 11 -15 .
[10] Qiu Chang-bo, Zhang Jia,Shi Meng . Stage classification model of enterprise informatization maturity[J]. 吉林大学学报(工学版), 2007, 37(04): 976 -980 .