Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2069-2075.doi: 10.13229/j.cnki.jdxbgxb20231043

Previous Articles     Next Articles

Graph node classification algorithm based on similarity random walk aggregation

Xiang-jiu CHE(),Yu-peng SUN   

  1. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2023-10-01 Online:2025-06-01 Published:2025-07-23

Abstract:

In addressing the issue of relatively low accuracy in node classification tasks on heterophily graphs using methods such as MLP and GCN, a Graph Neural Network based on Similarity Random Walk Aggregation (SRW-GNN) was proposed. To address the impact of heterophily on node embeddings, SRW-GNN employs the similarity between nodes as probabilities for conducting random walks. The sampled paths serve as the neighborhood, enabling the model to gather more homophily-based information. To address the issue of insensitivity to node order in most existing graph neural network (GNN) aggregators, a path aggregator based on recurrent neural networks (RNNs) was introduced to simultaneously extract features and order information of each node in the path. Furthermore, nodes exhibit varying preferences for different paths. To adaptively learn the importance of different paths in node encoding, an attention mechanism was employed to dynamically adjust the contributions of each path to the final embedding. Experimental results on several commonly used heterophily graph datasets demonstrate that the proposed SRW-GNN method achieves significantly higher accuracy compared to the methods such as MLP, GCN, H2GCN, HOG-GCN, validating its effectiveness in heterophily graph node classification tasks.

Key words: computer application technology, graph neural network, heterophily graph, node classification

CLC Number: 

  • TP391.4

Fig.1

Homophily or heterophily"

Fig.2

Model framework"

Table 1

Dataset statistics"

参数数据集
CornellTexasWisconsin
节点数/个183183251
边数/个295309499
特征维数/个1 7031 7031 703
类别数量/个555

Table 2

Experiment results"

方 法数据集
CornellTexasWisconsin
基线方法MLP84.32±6.1483.24±5.7786.47±3.33
GCN55.14±7.5755.68±9.6153.73±7.65
GraphSAGE78.38±6.8485.41±5.1685.49±3.53
GAT54.59±7.3357.30±3.3854.31±5.62
H2GCN78.92±5.2482.16±8.2182.57±3.21
CPGNN63.51±5.8374.32±7.3881.76±6.74
GPR-GNN82.97±5.6884.59±4.3783.92±3.14
BM-GCN79.14±8.4485.13±4.6482.82±8.89
HOG-GCN84.32±4.3285.17±4.4086.67±3.36
RAW-GNN84.86±5.4385.95±4.1588.24±3.72
消融实验COS-SRW83.78±5.6783.78±4.3687.06±2.35
SRW-MLP56.76±6.6257.57±8.4744.12±9.62
SRW-MEAN84.32±5.6482.97±6.7486.47±2.83
本文方法SRW-GNN86.49±6.4086.76±4.4388.63±3.70
[1] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
Xu Bing-bing, Cen Ke-yan, Huang Jun-jie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
[2] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[3] Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[C]∥Proceedings of the International Conference on Machine Learning, Sydney, Australia, 2017: 1263-1272.
[4] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J/OL]. [2023-08-11].
[5] Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs[J/OL]. [2023-08-11].
[6] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. Stat, 2017, 1050(20): No.48550.
[7] Zhu J, Rossi R A, Rao A, et al. Graph neural networks with heterophily[J]. AAAI Technical Track on Machine Learning V, 2021, 35(12): 11168-11176.
[8] Wang T, Jin D, Wang R, et al. Powerful graph convolutional networks with adaptive propagation mechanism for homophily and heterophily[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2022, 36(4): 4210-4218.
[9] He D, Liang C, Liu H, et al. Block modeling-guided graph convolutional neural networks[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2022: 4022-4029.
[10] Yan Y, Hashemi M, Swersky K, et al. Two sides of the same coin: heterophily and oversmoothing in graph convolutional neural networks[C]∥2022 IEEE International Conference on Data Mining (ICDM), Chennai, India,2022: 1287-1292.
[11] Zhu M, Wang X, Shi C, et al. Interpreting and unifying graph neural networks with an optimization framework[C]∥Proceedings of the Web Conference, New York, NY, USA, 2021: 1215-1226.
[12] Pei H, Wei B, Chang K C C, et al. Geom-GCN: geometric graph convolutional networks[J/OL]. [2023-08-11].
[13] Zhu J, Yan Y, Zhao L, et al. Beyond homophily in graph neural networks: current limitations and effective designs[C]∥Advances in Neural Information Processing Systems, Long Beach, USA,2020, 33: 7793-7804.
[14] Chien E, Peng J, Li P, et al. Adaptive universal generalized pagerank graph neural network[J/OL]. [2023-08-11].
[15] Jin D, Wang R, Ge M, et al. Raw-gnn: random walk aggregation based graph neural network[C]∥Proceedings of the 31st International Joint Conference on Artificial Intelligence,Shenzhen, China, 2022: 2108-2114.
[16] Fu X Y, Zhang J N, Meng Z Q, et al. Magnn: metapath aggregated graph neural network for heterogeneous graph embedding[C]∥Proceedings of the Web Conference, Taipei, China, 2020: 2331-2341.
[17] Luan S, Hua C, Lu Q, et al. Revisiting heterophily for graph neural networks[J]. Advances in Neural Information Processing Systems, 2022, 35: 1362-1375.
[18] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[19] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].[2023-08-11].
[1] Jian WANG,Chen-wei JIA. Trajectory prediction model for intelligent connected vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1963-1972.
[2] Feng-feng ZHOU,Zhe GUO,Yu-si FAN. Feature representation algorithm for imbalanced classification of multi⁃omics cancer data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2089-2096.
[3] Xiao-dong CAI,Qing-song ZHOU,Yan-yan ZHANG,Yun XUE. Social recommendation based on global capture of dynamic, static and relational features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 700-708.
[4] Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686.
[5] Xi-jun ZHANG,Guang-jie YU,Yong CUI,Ji-yang SHANG. Short-term traffic flow prediction based on clustering algorithm and graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1593-1600.
[6] Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098.
[7] Dondrub LHAKPA,Duoji ZHAXI,Jie ZHU. Tibetan text normalization method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3577-3588.
[8] Yu-xin YE,Luo-jia XIA,Ming-hui SUN. Gesture input method based on transparent keyboard in augmented reality environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3274-3282.
[9] Na CHE,Yi-ming ZHU,Jian ZHAO,Lei SUN,Li-juan SHI,Xian-wei ZENG. Connectionism based audio-visual speech recognition method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2984-2993.
[10] Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379.
[11] Shan XUE,Ya-liang ZHANG,Qiong-ying LYU,Guo-hua CAO. Anti⁃unmanned aerial vehicle system object detection algorithm under complex background [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 891-901.
[12] Zhen WANG,Xiao-han YANG,Nan-nan WU,Guo-kun LI,Chuang FENG. Ordinal cross entropy Hashing based on generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3536-3546.
[13] Feng-feng ZHOU,Zhen-wei YAN. A model for identifying neuropeptides by feature selection based on hybrid features [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3238-3245.
[14] Li-yan DONG,Wei-ye LIANG,Yue-qun WANG,Yong-li LI. Global potential information combined graph neural networks for session-based recommendation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2964-2972.
[15] Jun-jie WANG,Yuan-jun NONG,Li-te ZHANG,Pei-chen ZHAI. Visual relationship detection method based on construction scene [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 226-233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Hong-xiu;Zuo Wen-jie;Li Yi-wen; Ren Lu-quan. ALE finite element simulation of oil storage lubrication mechanism on bionic nonsmooth micro-pits in piston surface[J]. 吉林大学学报(工学版), 2008, 38(03): 591 -0594 .
[2] He Li-qiao,Gao Yan,Wang Guo-guang . Calibration method for CCD laser diffraction filament
diameter measurement system
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 182 -0184 .
[3] Wang Xuhui1, Huang Shengguo1, Cao Li1, Shi Dinghao2, Shu Ping2 . LS-SVM based online trend prediction of gas path parameters of aero engine[J]. 吉林大学学报(工学版), 2008, 38(01): 239 -244 .
[4] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[5] Yu xi-zheng;Zheng jian-hua;Gao huai-bao;Liu zheng-chang . Transfer trajetory design between L1 and L2 in the EarthMoon system[J]. 吉林大学学报(工学版), 2008, 38(03): 741 -0745 .
[6] JIANG Gui-yan,ZHENG Zu-duo,YU Yan-xia . Representation and storage method for road network of traffic guidance system[J]. 吉林大学学报(工学版), 2008, 38(04): 797 -801 .
[7] Yang Yin-sheng;Sun Zhao-hua;Ma Ping;Tao Yue;Si Jin. T-S fuzzy system modeling based on hybrid of SOM and K-means [J]. 吉林大学学报(工学版), 2008, 38(03): 658 -0661 .
[8] YANG Jia-xi1, LI Lei1,2,ZHU Hui1, WANG Yu-min1 . Publicity verifiable fair electronic auction protocol[J]. 吉林大学学报(工学版), 2008, 38(04): 886 -889 .
[9] . [J]. 吉林大学学报(工学版), 2005, 35(01): 44 -0048 .
[10] Li Ming-zhe,Hu Zhi-qing,Cai Zhong-yi,Gong Xue-peng . Method of efficient continuous plastic forming for freeform surface part[J]. 吉林大学学报(工学版), 2007, 37(03): 489 -0494 .