Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2050-2062.doi: 10.13229/j.cnki.jdxbgxb.20231016

Previous Articles     Next Articles

Damage mechanism of FRP reinforced concrete under alkali freezing coupling effect

Wen-yuan XU(),Wei LI,Da-yang WANG,Yong-cheng JI()   

  1. School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2023-09-21 Online:2025-06-01 Published:2025-07-23
  • Contact: Yong-cheng JI E-mail:xuwenyuan@nefu.edu.cn;yongchengji@126.com

Abstract:

The degradation law of carbon/basalt/glass/aramid fiber-reinforced concrete under strong alkali solution and freeze-thaw coupling was explored. Fiber reinforced polymer (FRP) was used for full reinforcement of cylindrical axial compression members, and local reinforcement was used for prismatic bending members. The mass loss rate, dynamic elastic modulus, pH value change, compressive and flexural strength of the specimens under alkali frost coupling were tested. The results show that carbon fiber and aramid fiber reinforced specimens have better quality loss rate, dynamic elastic modulus, compressive strength loss, plasticity, and flexural bearing capacity loss than glass fiber and basalt fiber reinforced specimens. Based on experimental data, the Lam Teng constitutive model of FRP reinforced concrete with alkali frost coupling effect was modified.

Key words: structural engineering, fiber composite materials, concrete, durability

CLC Number: 

  • TU375

Fig.1

Fiber reinforced polyner"

Table 1

Properties of fiber composites and epoxy resin adhesives"

材料强度/MPa弹性模量/GPa断裂伸长率/%
CFRP3 5202671.78
BFRP3 0001201.60
GFRP2 500802.3
AFRP2 106117.81.75
环氧树脂胶54.32.72.25

Table 2

Concrete mix ratio"

材料水泥中砂碎石
5~10 mm10~20 mm
含量209.0387.0635.0350.7818.3

Table 3

Specimen numbers"

纤维布类型碱冻0次碱冻50次碱冻100次
CFRPP-C-F0P-C-F50P-C-F100
BFRPP-B-F0P-B-F50P-B-F100
GFRPP-G-F0P-G-F50P-G-F100
AFRPP-A-F0P-A-F50P-G-F100
对照组C-0C-50C-100

Fig.2

Sample"

Fig.3

Test equipment"

Fig.4

Mechanical test"

Fig.5

Surface condition of FRP reinforced concrete prism specimens"

Fig.6

Surface condition of FRP reinforced concrete cylindrical specimens"

Table 4

Mass of cylindrical specimens"

组别质量/kg
冻融0次冻融50次冻融100次
P-C3.6453.6553.664
P-G3.5953.6143.623
P-B3.653.6623.671
P-A3.6453.6693.679
对照组3.5653.5753.425

Fig.7

Mass loss rate of cylindrical specimens reinforced with FRP and control group"

Table 5

Quality of control group and FRP reinforced concrete prism specimens"

组别质量/kg
冻融0次冻融50次冻融100次
P-C9.5659.5759.500
P-B9.6159.6449.498
P-A9.6509.6749.566
P-G9.3459.3839.213
对照组9.4509.4989.298

Fig.8

Mass loss rate of prism specimens reinforced with FRP and control group"

Fig.9

Changes in pH value of NaOH solution during freeze-thaw process"

Table 6

Transverse fundamental frequencies of each group of specimens under different freeze-thaw cycles"

组别横向基频/Hz
冻融0次冻融50次冻融100次
P-C1 7171 6161 461
P-G1 7971 6721 500
P-B1 7581 6471 492
P-A1 8021 6761 493
对照组1 7271 5891 416

Fig.10

Relative elastic modulus of control group and FRP reinforced concrete"

Fig.11

Compressive failure state of FRP reinforced specimens and control group specimens"

Fig.12

Compressive strength of FRP reinforced specimens and control group specimens"

Table 7

Compressive strength and freeze-thaw strength loss rate of each group of specimens after 100 cycles"

组别平均抗压强度/MPa冻融100次试件强度损失率/%
冻融0次冻融50次冻融100次
P-C46.840.443.57.1
P-B40.037.527.431.5
P-G40.227.632.331.3
P-A35.427.631.311.6
对照组9.613.67.941.9

Fig.13

Stress-strain curves of each group of specimens"

Fig.14

Flexural bearing capacity of FRP reinforced specimens and control group specimens"

Table 8

Flexural bearing capacity and freeze-thaw capaclly loss rate of the specimen after 100 cycles"

组别平均抗压强度/MPa冻融100次试件强度损失率/%
冻融0次冻融50次冻融100次
P-C27.5023.1021.317.1
P-B20.5218.6416.718.6
P-G18.5016.7014.322.7
P-A15.9014.9013.018.2
对照组6.305.604.430.2

Fig.15

Load displacement curves of FRP reinforced specimens and control group specimens"

Fig.16

Fitting formulas for compressive strength and ultimate strain of each group of specimens"

Table 9

Parameters of stress-strain curve"

组别Ecf0εtfcc/MPaεcc
P-C-F013 0009.90.003 246.80.005 36
P-G-F014 80015.00.002 440.20.004 16
P-B-F011 5005.00.002 840.00.004 46
P-A-F018 20032.20.002 135.40.003 51

Fig.17

Comparison of stress-strain curves between calculation and experiment"

Table 10

Revised Lam-Teng model equation"

编号应力应变曲线
P-C

σc=Ecεc-(Ecεcc-fC+f0)24f0εc20εc<εt

σc=f0+εcfC-f0εcc1εtεcεcc1

P-B

σc=Ecεc-(Ecεcc-fB+f0)24f0εc20εc<εt

σc=f0+εcfB-f0εcc2εtεcεcc2

P-G

σc=Ecεc-(Ecεcc-fG+f0)24f0εc20εc<εt

σc=f0+εcfG-f0εcc3εtεcεcc3

P-A

σc=Ecεc-(Ecεcc-fA+f0)24f0εc20εc<εt

σc=f0+εcfA-f0εcc4εtεcεcc4

[1] 魏亚, 孔维康, 万成, 等. 比色法检测受火后混凝土损伤程度[J]. 吉林大学学报: 工学版, 2021, 51(1):233-244.
Wei Ya, Kong Wei-kang, Wan Cheng, et al. Colorimetry method in assessing fire-damaged concrete [J]. Journal of Jilin University (Engineering and Technology Edition), 2021,51 (1): 233-244.
[2] 李艺, 姬胜鹏. 冬期施工混杂纤维混凝土宏观性能及微观结构[J]. 吉林大学学报: 工学版, 2019, 49(3): 781-787.
Li Yi, Ji Sheng-peng. Macro‑properties and microstructure of hybrid fiber reinforced concrete in winter construction [J]. Journal of Jilin University (Engineering and Technology Edition), 2019,49 (3): 781-787.
[3] Yi Y, Guo S, Li S, et al. Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment[J]. Construction and Building Materials, 2021, 299: No.123957.
[4] Kim H Y, Park Y H, You Y J, et al. Short-term durability test for GFRP rods under various environmental conditions[J]. Composite Structures, 2008, 83(1): 37-47.
[5] D'Antino T, Pisani M A, Poggi C. Effect of the environment on the performance of GFRP reinforcing bars[J]. Composites Part B: Engineering, 2018, 141: 123-136.
[6] 宋萌萌, 吴文飞, 周恒. 不同应变率下碳纤维布约束混凝土单轴压缩力学性能试验研究[J]. 复合材料科学与工程, 2023(6): 80-87.
Song Meng-meng, Wu Wen-fei, Zhou Heng. Experimental study on the mechanical properties of concrete confined by carbon fiber cloth under uniaxial compression at different strain rates [J]. Composites Science and Engineering, 2023(6): 80-87.
[7] Golham M A, Al-Ahmed A H A. Behavior of GFRP reinforced concrete slabs with openings strengthened by CFRP strips[J]. Results in Engineering, 2023, 18: No.101033.
[8] Elwakkad N Y, Heiza K M, Mansour W. Experimental study and finite element modelling of the torsional behavior of self-compacting reinforced concrete (SCRC) beams strengthened by GFRP[J]. Case Studies in Construction Materials, 2023, 18: e02123.
[9] 王海良, 王博, 杨新磊, 等. 酸、碱、氯盐对玄武岩纤维布加固钢筋混凝土梁抗弯性能的影响[J]. 建筑结构, 2015, 45(9): 81-85, 55.
Wang Hai-liang, Wang Bo, Yang Xin-lei, et al. Effect of acid, alkaline, and chlorine salt on the flexural behavior of reinforced concrete beams strengthened by basalt fiber cloth [J]. Building Structure, 2015,45(9): 81-85, 55.
[10] 李江林, 谢建和, 陆中宇, 等. 氯盐环境下碳纤维布加固受损钢筋混凝土构件界面耐久性研究[J]. 工业建筑, 2019, 49(9): 124-129.
Li Jiang-lin, Xie Jian-he, Lu Zhong-yu, et al. Durability of interface between CFRP and damaged RC members under chloride environment [J]. Industrial Construction, 2019, 49 (9): 124-129.
[11] Bonacci J F, Maalej M. Externally bonded fiber-reinforced polymer for rehabilitation of corrosion damaged concrete beams[J]. Structural Journal, 2000, 97(5): 703-711.
[12] Alzeebaree R, Gülsan M E, Nis A, et al. Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks[J]. Steel and Composite Structures, 2018, 29(2): 201-218.
[13] Kuroda T, Inoue S, Yoshino A, et al. Effects of accelerated test conditions on ASR expansion of concrete core[J]. Bulletin of the Graduate School of Engineering/Faculty of Engineering, Tottori University, 2012, 42: 31-39.
[14] Guo F, Al-Saadi S, Raman R K S, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science, 2018, 141: 1-13.
[15] Rybin V A, Utkin А V, Baklanova N I. Corrosion of uncoated and oxide-coated basalt fibre in different alkaline media[J]. Corrosion Science,2016, 102: 503-509.
[16] Scheffler C, Förster T, Mäder E, et al. Aging of alkali-resistant glass and basalt fibers in alkaline solutions: evaluation of the failure stress by Weibull distribution function[J]. Journal of Non-Crystalline Solids, 2009, 355(52-54): 2588-2595.
[17] 鲁丽华, 陈四利, 宁宝宽, 等. 酸碱和冻融双重腐蚀下混凝土力学效应的试验研究[J]. 公路, 2006(8):154-158.
Lu Li-hua, Chen Si-li, Ning Bao-kuan, et al. Experimental study on mechanical effects of concrete under acid-base and freeze-thaw dual corrosion [J]. Highway, 2006(8): 154-158.
[18] Ji Y, Wang D. Durability of recycled aggregate concrete in cold regions[J]. Case Studies in Construction Materials, 2022, 17: e01475.
[19] Lam L, Teng J G. Strength models for fiber-reinforced plastic-confined concrete[J]. Journal of Structural Engineering,2002, 128(5): 612-623.
[1] Xue-ping FAN,Du YANG,Jiu-yu LI,Qi-fan ZHAO,Yue-fei LIU. Dynamic prediction of bridge coupled extreme stresses produced by temperature and vehicle loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1588-1594.
[2] Sheng-qi MEI,Xiao-dong LIU,Xing-ju WANG,Xu-feng LI,Teng WU,Xiang-xu CHENG. Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1595-1603.
[3] Zi-ming HE,Ai-qin SHEN,Lu-sheng WANG,Yin-chuan GUO,Jiang-fei HE. Review on strengthening technology of recycled concrete aggregate and its effect on performance of recycled aggregate concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 790-810.
[4] Liang-liang ZHANG,Hua CHENG,Xiao-jian WANG. Energy evolution law and failure criterion of high strength concrete under conventional triaxial compression [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 974-985.
[5] Jie YUAN,Jun-bo WANG,Xin CHEN,Xin HUANG,Ao-xiang ZHANG,An-qi CUI. Research progress on application of artificial intelligence in ultra⁃high performance concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 771-789.
[6] Yu ZHOU,Meng LI,Sheng-kui DI,Xian-zeng SHI,Dong CHEN. Analytical solution of thrust influence line of variable section two-hinged arch and application of damage identification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 664-672.
[7] Huai-xin LI,Chang-gen YAN,Bin LIN,Yu-ling SHI. Strength and statistical damage model in whole process of clay-concrete combined body [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 245-255.
[8] Yu-dai WANG,Bin WANG,Fu-sheng MIAO,Nan MA. Freezing and expansion response of lined channels under changes in hydrothermal coupling [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 256-268.
[9] Hao JIANG,Zheng-wen ZHAO. Experiment on shear performance of RC beams strengthened with basalt fiber grid cement-based composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 211-220.
[10] Guang-lei QU,Zong-wei YAN,Mu-lian ZHENG,Hong LIU,Yue-ming YUAN. Performance prediction of porous concrete based on neural network and regression analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 269-282.
[11] Fang-fang WEI,Li-ping LI,Qing-peng XU,You-zheng ZHAO,Jing-jing YANG. Experiment on seismic behavior of fire-fired composite shear wall with double steel plates and infill concrete after reinforcement [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 230-244.
[12] Wei-guo YANG,Ying-nan SU,Jian-qiang ZOU,Ruo-chen MA,Qing-liang ZHANG. Experiment and finite element analysis on new type of flange connection for precast concrete-filled steel tube core column [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 283-296.
[13] Fu-cheng WANG,Xin-rong ZHAO,Jia-bing TIAN,Guo-liang XIE,Li-ming ZHOU. Influence of rice straw ash on compressive properties and microstructure of concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2620-2630.
[14] Jin-quan ZHAO,Long ZHOU,Yong-gang DING,Rong-ji ZHU. Experiment on anchoring performance of spiral stirrup-corrugated pipe grout splicing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2484-2494.
[15] Jin-song ZHU,Xin-yao TONG,Xiao-xu LIU. Flexural behavior of ultra-high performance concrete joint without formwork in prefabricated small box girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2568-2580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Xue-xia, Feng Jiu-chao . Non-coherent detection scheme for chaotic digital communications based on inverse iteration[J]. 吉林大学学报(工学版), 2007, 37(01): 202 -205 .
[2] Xu Guan, Su Jian, Chen Rong, Zhang Li-bin, Su Li-li . Error analysis of measurement model and calibration method for automobile caster[J]. 吉林大学学报(工学版), 2008, 38(01): 17 -020 .
[3] Chen Hong-bin, Feng Jiu-chao . Multiuser chaotic communication schemes with quadrature modulation based on the Walsh codes[J]. 吉林大学学报(工学版), 2007, 37(04): 885 -890 .
[4] ZHANG Rui, TANG Zhi-ping, ZHENG Hang . Time and space multiscale numerical method by coupling
discrete element method and finite element method
[J]. 吉林大学学报(工学版), 2009, 39(02): 408 -0412 .
[5] Yang Yong-bai,Wang Jing-yu,Hu Xing-jun . Numerical simulation on flow field around pickup trucks[J]. 吉林大学学报(工学版), 2007, 37(06): 1236 -1241 .
[6] Su Yan, Liu Zhong-chang, Xu Yun, Guo Liang, Wang Zhi-wei . Exhaust emission histories of direct injection diesel engine during start[J]. 吉林大学学报(工学版), 2007, 37(04): 762 -766 .
[7] Lü Han-ming,WANG Yang. Topology keeping active contour model for triangular meshes[J]. 吉林大学学报(工学版), 2010, 40(01): 207 -0211 .
[8] WAN Yan-ling,CONG Qian,JIN Jing-fu,WANG Xiao-jun . Microstructure and wettability of dragonfly wings[J]. 吉林大学学报(工学版), 2009, 39(03): 732 -0736 .
[9] XU Guan, SU Jian, LI Xiao-tao, SU Li-li, ZHU Jun-lan. Precise and fractionized inertial system of automobile chassis dynamometer[J]. 吉林大学学报(工学版), 2010, 40(03): 636 -0639 .
[10] HU Ke-gang,WANG Lin-zhu,ZHOU Li,TANG Hong. Position assisted soft handover algorithm based on forecast of handover[J]. 吉林大学学报(工学版), 2010, 40(04): 1122 -1126 .