Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2145-2161.doi: 10.13229/j.cnki.jdxbgxb.20230875

   

Real-time road network traffic anomaly incident detection based on graph spatial-temporal pattern learning network

Shu-shan CHAI1(),Zhi-qiang ZHOU1,Hai-tao LI2(),Jiong-yang XU1   

  1. 1.Research Institute for Road Safety of the Ministry of Public Security,Beijing 100062,China
    2.College of Transportation,Jilin University,Changchun 130022,China
  • Received:2023-08-17 Online:2025-07-01 Published:2025-09-12
  • Contact: Hai-tao LI E-mail:sschai@foxmail.com;lihait@jlu.edu.cn

Abstract:

In order to improve the detection accuracy of road network traffic incidents and reduce the false alarm rate, a real-time automatic detection method of road network traffic incidents based on Graph Spatial-Temporal Pattern Learning Network (GSTPL) is proposed. Firstly, the traffic incident detection problem in the road network is abstracted into a graph structure anomaly detection task; a traffic spatial-temporal fusion graph representation method is designed to filter the road network graph node with strong spatial-temporal dependence and same pattern regularity as the input. Then, the graph spatial-temporal convolution and graph embedding layer are introduced to extract the spatial-temporal pattern features, and the multi-component input and fusion prediction structure are constructed to fuse traffic pattern rules in different time dimensions, and realize stable forecasts of graph node parameters. An abnormal state evaluation method is designed, and the final incident detection result is given by learning of the prediction error distribution and combining with the current detection data. Two real road networks datasets were used for validation experiments, and the proposed algorithm was compared with several typical traffic incident detection algorithms. The comparison results show that the proposed GSTPL has higher detection accuracy, lower false alarm rate and shorter average detection time. When the acceptable false positive rate is 5% and 10%, the detection rate of traffic incidents can reach more than 91% and 96% respectively.

Key words: engineering of communications and transportation system, automatic incident detection, graph neural network, pattern learning, abnormal evaluation

CLC Number: 

  • U458

Fig.1

Traffic incident detection network framework by GSTPL"

Fig.2

Two time series similarity measure by DTW and Fast-DTW algorithm"

Fig.3

Multi-component input sequence segment diagram"

Fig.4

Graph spatial-temporal convolution layer structure"

Fig.5

Multi-component fusion prediction layer structure"

Fig.6

Detector layout position of experimental road network"

Table 1

Major parameters configurations of GSTPL model"

模型参数设置值或参数类型
最大训练次数20 000
多组件预测训练阶段学习率0.001
组件权重联调阶段学习率0.000 1
网络优化器Adam
长范围滑动窗口Lw3 000
短范围滑动窗口Ls6
式(11)式(12)中高斯核带宽h0.2
式(16)中调整系数γ0.8
异常状态可能性判定阈值ε0.3

Fig.7

Discriminant effect of abnormal traffic incidents by GSTPL"

Fig.8

ROC curve comparison of different AID algorithms"

Table 2

Abnormal incidents detection performance of different AID algorithms"

评价指标美国西雅图数据集
模型SNDMAD

多元时空

动态阈值

贝叶斯分类

支持向

量机

随机森林

卡尔曼

滤波

STGAN

LSTM+

异常评估

ASTGAT+

异常评估

MSASGCN+异常评估

TCA+

异常评估

GSTPL

检测率

(误检率

5%)/%

78.2180.5282.7986.9284.6879.2589.2689.6191.3490.7891.6293.1594.52

检测率

(误检率

10%)/%

84.7587.3288.4389.7286.9286.2592.5694.5995.3294.6295.7898.6198.71

误检率

(检测率

90%)/%

28.7625.9324.8118.8520.1527.748.517.064.406.1734.8323.523.12

误检率

(检测率

95%)/%

45.9243.6440.2533.2139.0844.5212.2310.589.129.739.266.726.09

平均检测

时间/min

3.623.583.518.595.365.824.054.523.693.823.723.883.92
AUC0.904 30.912 40.918 20.947 60.942 50.923 50.9540.966 30.978 10.973 40.979 20.983 20.987 6
评价指标国内某市数据集
模型SNDMAD

多元时空

动态阈值

贝叶斯分类

支持向

量机

随机森林

卡尔曼

滤波

STGAN

LSTM+

异常评估

ASTGAT+

异常评估

MSASGCN+异常评估

TCA+

异常评估

GSTPL

检测率

(误检率5%)/%

75.6378.5279.5381.5780.2677.6586.1287.5289.6287.9688.1289.9291.43

检测率

(误检率10%)/%

81.4582.4684.4387.4685.1783.1489.3591.9294.6893.4293.6295.0396.54

误检率

(检测率90%)/%

20.5619.7617.5215.9217.3515.9311.358.926.157.4768.145.034.22

误检率

(检测率95%)/%

41.6237.9238.7231.5434.1729.2517.6212.5910.2511.3810.759.838.23

平均检测

时间/min

6.385.785.128.927.787.526.386.745.535.735.615.425.24
AUC0.853 60.861 70.87320.902 50.886 40.879 60.931 40.943 20.949 20.943 70.945 80.946 20.970 7

Table 3

Validation experiment of spatial-temporal graph structure input"

评价指标美国西雅图数据集国内某市数据集
空间图+GSTPL时间图+GSTPL时空融合图+GSTPL空间图+GSTPL时间图+GSTPL时空融合图+GSTPL
检测率(误检率5%)/%92.1693.7294.5289.5190.1791.43
检测率(误检率10%)/%96.4398.3298.7193.5495.2696.54
误检率(检测率90%)/%4.924.313.126.914.924.22
误检率(检测率95%)/%8.527.166.0910.319.738.23
平均检测时间/min3.823.963.925.535.425.24
AUC0.965 40.980 20.987 60.9410.953 60.970 7

Table 4

Validation experiment of multi-component input structure of GSTPL"

评价指标美国西雅图数据集国内某市数据集

近期

输入

日周期

输入

周周期

输入

近期+日周期输入近期+周周期输入

本文

方法

近期输入日周期输入周周期输入近期+日周期输入近期+周周期输入

本文

方法

检测率

(误检率5%)/%

92.5691.2889.1893.4792.3594.5289.6387.1286.5190.1589.9491.43

检测率

(误检率10%)/%

95.7695.3294.4296.5495.7298.7194.1893.2792.3495.1394.3696.54

误检率

(检测率90%)/%

4.954.926.624.384.763.126.948.829.324.926.354.22

误检率

(检测率95%)/%

9.429.8710.168.619.636.0910.3111.2512.639.2810.188.23
平均检测时间/min3.614.374.534.013.843.925.045.735.765.625.135.24
AUC0.961 30.951 60.943 20.976 10.963 20.987 60.950 30.948 10.942 60.952 50.962 30.970 7

Table 5

Validation experiment of anomaly evaluation module of GSTPL"

评价指标美国西雅图数据集国内某市数据集

GSTPL+

固定阈值

GSTPL+

动态阈值

本文方法

GSTPL+

固定阈值

GSTPL+

动态阈值

本文方法
检测率(误检率5%)/%84.7690.3194.5285.7288.4991.43
检测率(误检率10%)/%92.1594.6798.7189.6793.8496.54
误检率(检测率90%)/%8.924.983.1210.438.924.22
误检率(检测率95%)/%14.6710.376.0913.6211.368.23
平均检测时间/min3.793.833.925.16 min5.49 min5.24 min
AUC0.951 10.965 70.987 60.941 30.962 40.970 7
[1] 刘擎超, 陆建, 陈淑燕. 基于随机森林的交通事件检测方法设计与分析[J]. 东南大学学报: 英文版, 2014, 30(1): 88-95.
Liu Qing-chao, Lu Jian, Chen Shu-yan. Design and analysis of traffic detection based on random forest[J]. Journal of Southeast University (English Edition), 2014, 30(1): 88-95.
[2] Evans J, Waterson B, Hamilton A. Evolution and future of urban road incident detection algorithms[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(6): No.03120001.
[3] Payne H J, Tignor S C. Freeway incident-detection algorithms based on decision trees with states[J]. Transportation Research Record, 1978, 682: 30-37.
[4] Chakraborty P, Hegde C, Sharma A. Data-driven parallelizable traffic incident detection using spatio-temporally denoised robust thresholds[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 81-99.
[5] 程小洋. 交通事件检测算法的阈值自适应调整与优化[D]. 南京: 东南大学交通学院, 2021.
Cheng Xiao-yang. Threshold adaptive adjustment and optimization of traffic incident detection algorithm[D]. Nanjing: School of Transportation, Southeast University, 2021.
[6] Liu Q C, LU J, Chen S Y, et al. Multiple naive bayes classifiers ensemble for traffic incident detection[J]. Mathematical Problems in Engineering, 2014, 2014: No.383671.
[7] Srinivasan D, Jin X, Cheu R L. Evaluation of adaptive neural network models for freeway incident detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(1): 1-11.
[8] Liu G W, Jin H L, Li J Z, et al. A Bayesian deep learning method for freeway incident detection with uncertainty quantification[J]. Accident Analysis & Prevention, 2022, 176: No.106796.
[9] 商强, 林赐云, 杨兆升, 等. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报: 工学版, 2017, 51(7): 1339-1346.
Shang Qiang, Lin Ci-yun, Yang Zhao-sheng, et al. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(7): 1339-1346.
[10] Dogru N, Subasi A. Traffic accident detection using random forest classifier[C]∥The 15th Learning and Technology Conference: L&T, Jeddah, Saudi Arabia, 2018: 40-45.
[11] Wang L L, Ngan H Y T, Yung N H C. Automatic incident classification for large-scale traffic data by adaptive boosting SVM[J]. Information Sciences, 2018, 467: 59-73.
[12] Xiao J L. SVM and KNN ensemble learning for traffic incident detection[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 517: 29-35.
[13] Wang R, Work D B, Sowers R. Multiple model particle filter for traffic estimation and incident detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3461-3470.
[14] 尹春娥, 陈宽民, 万继志. 基于小波方程的高速公路交通事故自动检测方法[J]. 中国公路学报, 2014, 27(12): 106-112.
Yin Chun-er, Chen Kuan-min, Wan Ji-zhi. Automatic detection method for expressway traffic accidents based on wavelet equation[J]. China Journal of Highway and Transport, 2014, 27(12): 106-112.
[15] Adeli H, Samant A. An adaptive conjugate gradient neural network–wavelet model for traffic incident detection[J]. Computer‐Aided Civil and Infrastructure Engineering, 2000, 15(4): 251-260.
[16] Lu J, Chen S Y, Wang W, et al. A hybrid model of partial least squares and neural network for traffic incident detection[J]. Expert Systems with Applications, 2012, 39(5): 4775-4784.
[17] Tang S M, Gao H J. Traffic-incident detection-algorithm based on nonparametric regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 38-42.
[18] Jiang W W, Luo J Y. Graph neural network for traffic forecasting: A survey[J]. Expert Systems with Applications, 2022, 207: 117921.
[19] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769.
Feng Ning, Guo Sheng-nan, Song Chao, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3): 759-769.
[20] Cui Z Y, Henrickson K, Ke R M, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894.
[21] 李海涛. 基于深度学习的交通流运行风险评估方法研究[D]. 长春: 吉林大学交通学院, 2021.
Li Hai-tao. Research on traffic flow operation risk evaluation based on deep learning[D]. Changchun: College of Transportation, Jilin University, 2021.
[22] Deng L Y, Lian D F, Huang Z Y, et al. Graph convolutional adversarial networks for spatiotemporal anomaly detection[J]. IEEE Transactions on Neural Networks and Learning System, 2022, 33(6): 2416-2428.
[23] Zhang H Y, Zhao S Y, Liu R H, et al. Automatic traffic anomaly detection on the road network with spatial-temporal graph neural network representation learning[J]. Wireless Communications & Mobile Computing, 2022: No.4222827.
[24] Keogh E, Ratanamaharana C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7(3): 358-386.
[25] Ge L, Li S Y, Wang Y Q, et al. Global spatial-temporal graph convolutional network for urban traffic speed prediction[J]. Applied Sciences, 2020, 10(4): 1509.
[26] Qiu J, Dong Y, Ma H, et al. Network embedding as matrix factorization: unifying deepwalk, line, PTE, and node2vec[C]∥The 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 459-467.
[27] 李海涛, 李志慧, 王鑫, 等. 基于时间卷积自编码网络的实时交通事件自动检测方法[J]. 中国公路学报, 2022, 35(6): 265-276.
Li Hai-tao, Li Zhi-hui, Wang Xin, et al. Real-time automatic method of detecting traffic incidents based on temporal convolutional autoencoder network[J]. China Journal of Highway and Transport, 2022, 35(6): 265-276.
[28] Wang J J, Kumbasar T. Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 247-257.
[29] Balke K, Conrad L D, Christopher E M. Using probe-measured travel times to detect major freeway incidents in Houston, Texas[J]. Transportation Research Record, 1996, 1554(1): 213-220.
[30] Zhao Z, Chen W H, Wu X M, et al. LSTM network: a deep learning approach for short‐term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75.
[31] Kong X, Zhang J, Wei X, et al. Adaptive spatial-temporal graph attention networks for traffic flow forecasting[J]. Applied Intelligence, 2021, 52: 4300-4316.
[32] Cao Y, Liu D T, Yin Q Z, et al. MSASGCN:  Multi-head self-attention spatiotemporal graph convolutional network for traffic flow forecasting[J]. Journal of Advanced Transportation, 2022: 1-15.
[1] Hong-zhuan ZHAO,Ze-jian WU,Xin ZHANG,Sheng-wen SHI,Wen-yong LI,Xin ZHAN,En-yong XU,Jia-ming WANG. Curve lattice model for connected commercial vehicles based on density dispersion and information transmission delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2015-2029.
[2] Xiang-jiu CHE,Yu-peng SUN. Graph node classification algorithm based on similarity random walk aggregation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2069-2075.
[3] Yi-yong PAN,Jia-cong XU,Yi-wen YOU,Yong-jun QUAN. Multi-scale spatial heterogeneity analysis of influencing factors of ride-hailing travel demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1567-1575.
[4] Kai-ming LU,Yan-yan CHEN,Yao TONG,Jian ZHANG,Yong-xing LI,Ying LUO. Data-driven prediction of departure state for tail vehicles in queues at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1275-1286.
[5] He-shan ZHANG,Meng-wei FAN,Xin TAN,Zhan-ji ZHENG,Li-ming KOU,Jin XU. Dense small object vehicle detection in UAV aerial images using improved YOLOX [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1307-1318.
[6] Xiao-dong CAI,Qing-song ZHOU,Yan-yan ZHANG,Yun XUE. Social recommendation based on global capture of dynamic, static and relational features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 700-708.
[7] Jiao-rong WU,Xu-dong LIU. Analysis of influence of built environment of spatial units of different housing types on commuting mode choice [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 554-565.
[8] Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686.
[9] Fa-cheng CHEN,Guang-quan LU,Qing-feng LIN,Hao-dong ZHANG,She-qiang MA,De-zhi LIU,Hui-jun SONG. Review of drivers' takeover behavior in conditional automated driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 419-433.
[10] Yong-ming HE,Jia FENG,Kun WEI,Ya-nan WAN. Analysis on influencing factors of vehicle braking sideslip in curved section of superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 591-602.
[11] Zhao-wei QU,Lin LI,Yong-heng CHEN,Chang-jian WU. Traffic characteristics and safety analysis of long interval U-turn intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2206-2213.
[12] Yong-ming HE,Cong QUAN,Kun WEI,Jia FENG,Ya-nan WAN,Shi-sheng CHEN. Perceptual fusion method of vehicle road cooperation roadside unit in superhighway [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1923-1934.
[13] Guo-zhu CHENG,Lin SHENG,Hao-yu WANG,Tian-jun FENG. Safety evaluation method for pedestrians crossing street at signalized intersection considering secondary conflict of right-turn vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1903-1912.
[14] Xi-jun ZHANG,Guang-jie YU,Yong CUI,Ji-yang SHANG. Short-term traffic flow prediction based on clustering algorithm and graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1593-1600.
[15] Ming-ye ZHANG,Min YANG,Yu LI,Shi-yu HUANG,Qing-yun LI. Optimal electric bus scheduling with multiple vehicle types considering coordinated recharging strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1293-1301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!