Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3673-3685.doi: 10.13229/j.cnki.jdxbgxb.20240177
Hong-bin WANG1,2(
),Hao-dong TANG1,2,Yan-tuan XIAN1,2(
),Bo LIU3,Xin-liang GU3
CLC Number:
| [1] | 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J].计算机研究与发展, 2016, 53(3): 582-600. |
| Liu Q, Li Y, Duan H, et al. Knowledge graph construction techniques[J]. Jounraal of Computer Research and Development, 2016, 53(3): 582-600. | |
| [2] | Lehmann J, Isele R, Jakob M, et al. DBpedia—a large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6(2): 167-195. |
| [3] | Suchanek F, Kasneci G, Weikum G. YAGO: a core of semantic knowledge unifying WordNet and wikipedia[C]∥Proceedings of the 16th International Conference on World Wide Web, New York, USA, 2007:697-706. |
| [4] | Bollacker K, Evans C, Paritosh P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]∥Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, New York, USA, 2008: 1247-1250. |
| [5] | Xu B, Xu Y, Liang J, et al. CN-dbpedia: a never-ending Chinese knowledge extraction system[C]∥Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems.Berlin: Springer, 2017: 428-438. |
| [6] | 张婷婷, 欧阳丹彤, 孙成林, 等. 融合协同过滤的神经Bandits推荐算法[J]. 吉林大学学报: 理学版, 2024, 62(1): 92-99. |
| Zhang Ting-ting, Ouyang Dan-tong, Sun Cheng-lin, et al. Neural bandits recommendation algorithm based on collaborative filtering[J]. Journal of Jilin University (Science Edition), 2024, 62(1): 92-99. | |
| [7] | 孟令鑫, 才华, 付强, 等. 基于关系记忆与路径信息的多跳知识图谱问答算法[J]. 吉林大学学报: 理学版, 2024, 62(6): 1391-1400. |
| Meng Ling-xin, Cai Hua, Fu Qiang, et al. Multi-hop knowledge graph question answering algorithm based on relational memory and path information[J]. Journal of Jilin University (Science Edition), 2024, 62(6): 1391-1400. | |
| [8] | 李鑫, 王文迪, 张伟, 等. 基于知识嵌入技术的制度文件推荐算法[J]. 吉林大学学报: 理学版, 2024, 62(6): 1377-1383. |
| Li Xin, Wang Wen-di, Zhang Wei, et al. Recommendation algorithm for institutional documents based on knowledge embedding technology[J]. Journal of Jilin University (Science Edition), 2024, 62(6): 1377-1383. | |
| [9] | 化青远, 彭涛, 崔海, 毕海嘉. 基于知识图谱中路径推理的多轮对话模型[J]. 吉林大学学报: 理学版, 2025, 63(1): 76-82. |
| Hua Qing-yuan, Peng Tao, Cui Hai, et al. Multi round conversational model based on path reasoning in knowledge graph[J]. Journal of Jilin University (Science Edition), 2025, 63(1): 76-0082. | |
| [10] | 何山, 肖晰, 张嘉玲. 面向领域知识图谱的实体关系抽取模型仿真[J]. 吉林大学学报: 理学版, 2025, 63(2): 465-471. |
| He Shan, Xiao Xi, Zhang Jia-ling. Simulation of entity relationship extraction model for domain knowledge graph[J]. Journal of Jilin University (Science Edition), 2025, 63(2): 465-471. | |
| [11] | 费敏学, 黄东岩, 郭晓新. 改进蜣螂算法优化机器学习模型[J]. 吉林大学学报: 理学版, 2025, 63(4): 1117-1121. |
| Fei Min-xue, Huang Dong-yan, Guo Xiao-xin. Improve dung beetle algorithm to optimize machine learning model[J]. Journal of Jilin University (Science Edition), 2025, 63(4): 1117-1121. | |
| [12] | 汪雨竹, 彭涛, 朱蓓蓓, 等. 基于元学习的小样本知识图谱补全[J]. 吉林大学学报: 理学版, 2023, 61(3): 623-630. |
| Wang Yu-zhu, Peng Tao, Zhu Bei-bei, et al. Few-shot knowledge graph completion based on meta learning[J]. Journal of Jilin University (Science Edition), 2023, 61(3): 623-630. | |
| [13] | Lu W, Wang P, Ma X, et al. Enrich cross-lingual entity links for inline wikis via multi-modal semantic matching[J]. Information Processing & Management, 2020, 57(5): 102271. |
| [14] | 王雪鹏, 刘康, 何世柱, 等. 基于网络语义标签的多源知识库实体对齐算法[J].计算机学报, 2017, 40(3): 701-711. |
| Wang Xue-peng, Liu Kang, He Shi-zhu, et al. Multi-source knowledge bases entity alignment by leveraging semantic tags[J]. Chinese Journal of Computers, 2017, 40(3): 701-711. | |
| [15] | Zhang C, Song D, Huang C, et al. Heterogeneous graph neural network[C]∥Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, USA, 2019: 793-803. |
| [16] | 庄严, 李国良, 冯建华. 知识库实体对齐技术综述[J]. 计算机研究与发展, 2016, 53(1): 165-192. |
| Zhuang Yan, Li Guo-liang, Feng Jian-hua. A survey on entity alignment of knowledge base[J]. Journal of Computer Research and Development, 2016, 53(1): 165-192. | |
| [17] | 乔晶晶, 段利国, 李爱萍. 融合多种特征的实体对齐算法[J]. 计算机工程与设计, 2018, 39(11): 3395-3400. |
| Qiao Jing-jing, Duan Li-guo, Li Ai-ping. Entity alignment algorithm based on multi-features[J]. Computer Engineering and Design, 2018, 39(11): 3395-3400. | |
| [18] | Kipf N, Welling M. Semi-supervised classification with graph convolutional networks[C]∥Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2016: 160902907. |
| [19] | Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[C]∥Proceedings of the 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 171010903v3. |
| [20] | Wu Y, Liu X, Feng Y, et al. Jointly learning entity and relation representations for entity alignment[C]∥Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 240-249. |
| [21] | Wu Y, Liu X, Feng Y, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[C]∥Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 5278-5284. |
| [22] | Wu Y, Liu X, Feng Y, et al. Neighborhood matching network for entity alignment[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Virtual, 2020: 6477-6487. |
| [23] | Bordes A, Usunier N, García D A, et al. Translating embeddings for modeling multi-relational data[C]∥Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787-2795. |
| [24] | Chen M, Tian Y, Chang K. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment[C]∥Proceedings of the 27th International Joint Conference on Artificial Intelligence, Jeju, South Korea, 2018: 3998-4004. |
| [25] | Zhu Q, Wei H, Sisman B, et al. Collective multi-type entity alignment between knowledge graphs[C]∥Proceedings of the 2020 World Wide Web Conference, Taipei, China, 2020: 2241-2252. |
| [26] | Kipf T, Welling M. Semi-supervised classification with graph convolutional networks[C]∥Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017: 160902907. |
| [27] | Chen L, Gu W, Tian X, et al. AHAB: aligning heterogeneous knowledge bases via iterative blocking[J]. Information Processing & Management, 2019, 56(1): 1-13. |
| [28] | Cao Y, Liu Z, Li C, et al. Multi-channel graph neural network for entity alignment[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 1452-1461. |
| [29] | Wu Y, Liu X, Feng Y, et al. Neighborhood matching network for entity alignment[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Virtual, 2020: 6477-6487. |
| [30] | Sun Z. A benchmarking study of embedding-based entity alignment for knowledge graphs[C]∥Proceedings of the VLDB Endowment, Tokyo, Japan, 2020: 2326-2340. |
| [31] | Wang Z, Lan X, Zhang Y, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]∥Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 349-357. |
| [32] | Yang H W, Zou Y, Shi P, et al. Aligning cross-lingual entities with multi-aspect information[C]∥Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 4430-4440. |
| [33] | Ye R, Li X, Fang Y, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]∥Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 4135-4141. |
| [34] | Xu K, Wang L, Yu M, et al. Cross-lingual knowledge graph alignment via graph matching neural network[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 3156-3161. |
| [35] | Zhang Q, Sun Z, Hu W, et al. Multi-view knowledge graph embedding for entity alignment[C]∥Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 5429-5435. |
| [36] | Sun Z, Hu W. Cross-lingual entity alignment via joint attribute-preserving embedding[C]∥Proceedings of the International Semantic Web Conference, Vienna, Austria, 2017: 628-644. |
| [37] | Trisedya B, Qi J, Zhang R. Entity alignment between knowledge graphs using attribute embeddings[C]∥Proceedings of the 33th AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 297-304. |
| [38] | Liu Z, Cao Y, Pan L, et al. Exploring and evaluating attributes, values, and structures for entity alignment[C]∥Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Virtual, 2020: 6355-6364. |
| [39] | Yang K, Liu S, Zhao J, et al. COTSAE: co-training of structure and attribute embeddings for entity alignment[C]∥Proceedings of 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 3025-3032. |
| [40] | Chen B, Zhang J, Tang X, et al. JarKA: modeling attribute interactions for cross-lingual knowledge alignment[C]∥Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, Singapore, 2020: 845-856. |
| [41] | Chen M, Tian Y, Chang K, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment[C]∥Proceedings of the 27th International Joint Conference on Artificial Intelligence, Jeju, South Korea, 2018: 3998-4004. |
| [42] | Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]∥Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 3111-3119. |
| [43] | Rahimi A, Cohn T, Baldwin T. Semi-supervised user geolocation via graph convolutional networks[C]∥Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2009-2019. |
| [44] | Liu P, Li H, Wang Z, et al. Multi-features based semantic augmentation networks for named entity recognition in threat intelligence[J]. International Conference on Pattern Recognition, 2022, 7: 250243626. |
| [45] | Sun Z, Hu W, Zhang Q, et al. Bootstrapping entity alignment with knowledge graph embedding[C]∥Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 4396-4402. |
| [46] | Zhu R B, Ma M, Wang P. RAGA: relation-aware graph attention networks for global entity alignment[C]∥Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, Virtual, 2021: 501-513. |
| [47] | Cai W S, Ma W J, Zhan J Y, et al. Entity alignment with reliable path reasoning and relation-aware heterogeneous graph transformer[C]∥Proceedings of the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence, Vienna, Austria, 2022: 1930-1937. |
| [1] | Xiu-hui WANG,Yong-bo XU. Chinese named entity recognition algorithm with soft attention mask embedding [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 231-238. |
| [2] | Jing-shu YUAN,Wu LI,Xing-yu ZHAO,Man YUAN. Semantic matching model based on BERTGAT-Contrastive [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2383-2392. |
| [3] | You-wei WANG,Ao LIU,Li-zhou FENG. New method for text sentiment classification based on knowledge distillation and comment time [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1664-1674. |
| [4] | Jun-jie LIU,Jia-yi Dong,Yong YANG,Dan LIU,Fu-heng QU,Yan-chang LYU. Analysis of factors associated with online learning performance of students based on HM-OLS stepwise regression model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3755-3762. |
| [5] | Liu LIU,Kun DING,Shan-shan LIU,Ming LIU. Event detection method as machine reading comprehension [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 533-539. |
| [6] | Yue-lin CHEN,Zhu-cheng GAO,Xiao-dong CAI. Long text semantic matching model based on BERT and dense composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 232-239. |
| [7] | Yue-kun MA,Yi-feng HAO. Fast recognition method of short text named entities considering feature sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3529-3535. |
| [8] | Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387. |
| [9] | Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379. |
| [10] | Jian LI,Qi XIONG,Ya-ting HU,Kong-yu LIU. Chinese named entity recognition method based on Transformer and hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1427-1434. |
| [11] | Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880. |
| [12] | Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433. |
| [13] | Dong-ming SUN,Liang HU,Yong-heng XING,Feng WANG. Text fusion based internet of things service recommendation for trigger⁃action programming pattern [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2182-2189. |
| [14] | Ya-hui ZHAO,Fei-yang YANG,Zhen-guo ZHANG,Rong-yi CUI. Korean text structure discovery based on reinforcement learning and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1387-1395. |
| [15] | WANG Jun-hua,ZUO Wan-li,PENG Tao. Test-oriented ontology learning methods [J]. 吉林大学学报(工学版), 2015, 45(1): 236-244. |
|
||