|
基于眼睛与嘴部状态识别的疲劳驾驶检测
邹昕彤, 王世刚, 赵文婷, 赵晓琳, 李天舒
吉林大学学报(信息科学版). 2017 (2):
204-211.
摘要
(
681 )
PDF(3886KB)
(
314
)
为在驾驶员佩戴眼镜的情况下也能准确有效地检测疲劳状态, 提出一种判断是否佩戴眼镜的方法, 并建
立了基于眼睛与嘴部状态的疲劳驾驶检测系统。 对该系统中有关目标检测、 特征提取与图像识别等算法进行
研究。 首先, 采用 Adaboost 算法通过人脸分类器从视频帧中检测人脸区域, 并根据面部器官几何分布规则粗检
眼睛与嘴部区域; 其次, 基于大律法自适应二值化, 采用垂直积分投影法判断是否配戴眼镜, 根据灰度直方图
统计特征值法判断戴眼镜的眼部区域状态, 另外, 利用似圆度判断嘴部打哈欠情况; 最后, 利用 PERCLOS
(Percentage of Eyelid Closure over the Pupil)值识别眼睛疲劳状态, 利用打哈欠频率识别嘴部疲劳状态。 当检测
到驾驶员处于疲劳状态, 则及时给出疲劳警告。 实验结果表明, 该方法可有效解决眼镜对检测的干扰, 并适用
于不同光照与环境。 同时, 在戴眼镜情况下对于眼睛与嘴部疲劳状态的判断优于其他方法。 基本满足疲劳检
测系统对良好的实时性、 稳定性与鲁棒性等要求。
相关文章 |
计量指标
|